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MAXIMUM PRINCIPLE OF OPTIMAL CONTROL FOR
DEGENERATE QUASI-LINEAR ELLIPTIC EQUATIONS*
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Abstract. Optimal control problems governed by degenerate quasi-linear partial differential
equations of elliptic type are considered. The optimal control systems considered may lack Cesari-
type conditions, and therefore the corresponding approximate optimal control problem may have no
solution. To yield the maximum principle of optimal pairs, relaxed controls are used to overcome the
difficulties occurring when considering approximate problems. The relaxed controls used are defined
by finite additive measures so that the case of the control set being noncompact can be treated.
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1. Introduction. Let Q C R™ be a bounded domain. Consider the degenerate
elliptic partial differential equation,

(1.1) {—&Wﬂ%WMM%0=ﬂ%M@m@» in Q.
' yloa =0,

and the cost functional
Tu) = [ £y, u@)do.

We assume the following:

(S1) Let 1 < p < 400,  C R™ be a bounded domain with C1'! boundary 99, U
be a separable metric space, and U,q = {v : @ — Ulv is measurable}.

(S2) Let ¢ € C(Q2 x [0, +00)) N CH( x (0, +00)) satisfy p(z,0) = 0 for all x € Q.
Moreover, there exist A > A > 0 such that for almost all z € €,

(1.2) AsP72 < g (z,s) < AsP™2 Vs € (0,400),
(1.3) D lpw(z,5) < AP Vs € (0, +00).
i=1

(S3) The function f : Q2 x R x U — R has the following properties: f(-,y,u) is
measurable in Q, f(x,-,u) is in C*(R). f,(x,-,-) and f(z,-,-) are continuous in Rx U.
Moreover,

(1.4) fy(z,y,u) <0 Y(z,y,u) € QxR x U,
and for any R > 0, there exists a constant My > 0 such that

(1.5) |f(x,y,w)| + | fy(z,y,u)| < Mg V(z,u) € 2 x U, |yl <R.
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(S4) The function f°:Q x R x U — R satisfies (S3) except for (1.4).

In our assumptions, U is not necessarily compact, which enables us to treat
unbounded controls. The separability of U is used in applying the Filippov lemma
and getting maximum conditions from that in integral form.

Our optimal control problem is as follows.

Problem (C). Find a u(-) € Uyq such that

Ja() = it Iu()).

The purpose of this paper is to give a Pontryagin maximum principle of an optimal
control 4(-) to Problem (C).

Similar problems were considered by Casas and Ferndndez [2], [3] (see also [4]).

Because of the degeneracy of (1.1), to get necessary conditions of optimal controls,
usually, one needs to consider approximate problems. In our case, no Cesari condition
is assumed. Thus, the first difficulty we meet is that even if Problem (C) has an
optimal control, the corresponding approximate optimal control problem may have no
solution. On the other hand, when the approximate problems have optimal solutions,
difficulties still occur in yielding maximum principle for Problem (C) from that for
approximate problems. In [2], because of the speciality of the problem treated there,
the first difficulty does not occur. Moreover, by using the convexity, the authors of
[2] got strong convergence of optimal controls for approximate problems, obtaining
the final results. To overcome the difficulties we just mentioned, we will consider
relaxed controls. But another difficulty occurs when relaxed control is introduced. To
ensure a sequence of relaxed controls having a subsequence converging weakly to a
relaxed control, usually, we need to suppose that the control set U is compact (see
[11], [21], and [25]). In this paper, we follow the track of Fattorini, who considered
finite additive relaxed control in [9]. Such “relaxed controls” are different from those
considered in [11], [21], and [25]. Using this new concept of “relaxed control,” one is
able to treat the case of U being a noncompact set.

Our main theorems are as follows.

THEOREM 1.1. Suppose that (S1)—(S4) hold, 1 < p < 2. Let (g(-),u(")) €
Wy P(2) X Uaq be an optimal state-control pair to Problem (C). Then, there exists a
P(-) € Wy*() such that

(1.6)  —div { {‘P(T’v;y) (I - Vygf’f) + sz, |Vy|)v?rg|yf} vw}

= fyl, g, u(2))y — fo(z,g,a(x))  in {Vy#0},

(1.7) Vi(z) =0, a.e. z € {Vy =0},

and for almost all x € Q,

(1.8) H(z, (), u(z), () = max H(z, y(x), v, & (x)),

where I denotes the n X n identity matriz and

(19) H(Q%Z/’Uﬂﬁ) = f(l',y,’l))’(/)—fo(l',y,’l))
YV (z,y,v,9) € A xR x U x R.
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THEOREM 1.2. Suppose that (S1)—(S4) hold, 2 < p < +0o. Moreover, suppose
that there exists a constant g > 0 such that

(1.10) fylz,y,u) < —bp YV (z,y,u) € QxR xU.

Let (gj(),ﬂ()} € Wy P() X Uaq be an optimal pair to Problem (C). Then, there exists
a(-) € Wllo’C (Q) satisfying (1.6) such that, for almost all x € {Vy # 0}, (1.8) holds,
where Wllof () denotes the set of functions belonging to W12(Qq) for any Qo CC Q.

Because of the degeneracy of the state equation (1.1), usually, the conditions of
the adjoint state ¢(-) that we have given in Theorems 1.1 and 1.2 are not enough
to determine it. Thus, in general, we can hardly determine the optimal controls
from these necessary conditions (see also the similar theorems established in [2], [3]).
Nevertheless, we can really use such conditions to find some important information
about the optimal control. In [15], similar results were used to estimate the optimal
controls, getting the regularities of optimal pairs.

In the case that n = 1 and 1 < p < 2, our necessary conditions can be written
in the form of equations of first order. Thus, in this case we are able to avoid using
singular sets and we are sure that it keeps much important information of the optimal
control.

THEOREM 1.3. Suppose that (S1)—(S4) hold, 1 < p < 2, Q@ = (a,b) for some
—00 < a<b<+oo. Let (5(-),a(-)) € WyP(a,b) x Uaq be an optimal pair to Problem
(C). Then, there exist a U(-) € WhH(a,b) and a () € Wy (a,b) \WHT>(a, b)
such that

V' (z) = fyle, g, a) — f(,5,4), a<z<b,

M) = —— G T a<z
(11 YO eyt oSt
b(a) =¥ (b) =0,
and for almost all x € (a,b)
(1.12) H(z,5(x), a(x), ¥ (x)) = max H(z, §(x), v, (z)).

velU

2. Classical control and relaxed control. In this section, we recall the con-
cept of relaxed control and the relation between classical controls and relaxed controls.
The concept of relaxed control can be traced back to the work of Young and McShane
[27], 28], [29], [18], [19], [20] and their generalized curves (see also [22], [30]). Due to
the development of measure theory and theory of generalized functions, McShane [21],
Warga [25], and Gamkrelidze [11] gave the concept a new expression called “relaxed
control” that is easier to understand than its archetype. In [9], to treat the case of
the control set U being noncompact, Fattorini gave a new definition of relaxed control
based on finite additive measures on U.

Now, let us recall some basic notions. Let ® be a family of subsets of U. &
is called a field of U if it contains the empty set (), the complement of each of its
members, and the union of its two elements. Let F be the field generated by the
closed sets of U, that is, F is the smallest field containing all closed subsets of U. A
set function u defined on F is called a finitely additive measure on U if p(0) = 0 and
w(AUB) = u(A) + u(B) for disjoint A, B € F (see [8, p. 96]), where p(A) can be a
real number, —oco or +o0o. The total variation || is defined by

|ul(A) = sup Y~ |u(A),
j=1
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where the supremum is taken over all finite sequences {4;} of disjoint sets in F with
A;CAIf

il = [ul(U) < +o00,

then p is said to be of bounded variation. A finitely additive measure is called regular if
for any A € F and € > 0, there exists two sets B, D € F such that cl(B) C A C int(D)
(here cl(B) and int(D) denote the closure of B and the interior of D, respectively), and
|1|(E) < e for any set E € F with E C D\ B. Let M(U) be the space of all regular
bounded finitely additive measures on U (u is bounded if sup 4¢ z |(A4)| < +o0, or
equivalently ||| < +00). Then M(U) is a Banach space under norm || - ||. Let C'(U)
be the space of all continuous bounded functions defined on U with its supremum
norm | - ||¢(wy. Then we have (see [8, Theorem IV.6.2]) the following lemma.

LEMMA 2.1. The dual space C(U)* of C(U) is isometrically isomorphic to M(U).
An element p € M(U) acts on elements g(-) € C(U) in the form

(2.1) (,g) = /U o(v) ().

For an integration theory based on finitely additive measure, see [8, 111.2]. An
important difference between an integral based on finitely additive measures and that
based on countably additive measures is that for a finitely additive measure p and an
p-integrable nonnegative function g(-) on U,

| 9to) ntae) =0
U

does not means g =0, pu a.e. U.
Let L>®(2; M(U)), be the space of all M(U)-valued C(U)-weakly measurable
functions which are bounded almost everywhere. That is, o(-) € L™ (Q; M(U)),, if

o(x) e M(U) Ve,

x v+ (o(x),g) is measurable VgeCU),

and there exists a constant C' > 0 such that for almost all x € 2,

(e@).9)| < Clglew)  Vgecw),

An element p € M(U) is said to be a probability measure on U if i is nonnegative
and p(U) = 1. Let M (U) be the set of all probability measures on U, and let
R(;U) be the set of all MY (U)-valued C(U)-weakly measurable functions in €,
that is, o(-) € R if

o(z)e ML(U)  Vzeq,
and

x /Ug(v) o(z)(dv) is measurable Vg e C(U).

Any member of R(2;U) will be called a relaxed control. Respectively, an element of
U,q is called a classical control.
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By Lemma 2.1 and a discussion similar to that in the proof of Theorems 2.1 and
2.3 in [9] (see also [6] and [7]), we can get the following.

LEMMA 2.2. The dual space L*(2;C(U))* of LY(Q;C(U)) is isometrically iso-
morphic to Lo (Q; M(U))y.

Thus, R(Q;U) C L>®(Q; M(U)), can be looked at as a subset of L'(Q; C(U))*
by setting

= X r,v)o\x v 1 g ; .
(a,h)f/ﬂd /Uh( W) o@)dv)  Yhe LNQ, ), o € R(T)

Moreover, using the Banach—Alaoglu theorem, we have the following.

LEMMA 2.3. Suppose 0 C R™ is a bounded domain and U is a metric space.
Then for any sequence o(-) € R(Q;U), there exists a o(-) € R(Q;U) such that for
any h € L'(Q;C(U)), there exists a subsequence oy, (-) of oi(+) satisfying

(o0, h) = /Q de /U Wz, ), (@) (dv) — (o, h).

For convenience, in this paper, the above property will be denoted as

o) o) i R(QU).

We note that in Lemma 2.3, the choice of the subsequence oy, (+) is dependent of
h. On the other hand, when U is compact, L'(€; C(U)) is separable. Consequently,
ok,;(-) can be chosen independently of h in this case (see [11, Chapter 8] or [25,
Chapter 4]). The following lemma shows that relaxed control can be approximated
by classical control.

LEMMA 2.4. Let (S1)—(S4) hold, and let o(-) € R(;U). Then for every finite set
{h;} C L>®(Q;C(U)), i =1,...,N, and any 6 > 0, there exist u1(-),... ,uns+1(:) €
Una and nonnegative measurable functions ai(+),..., an41(-) such that

N+1

(22) S =1,

i=1
and for anyk=1,... N,

N+1

LMWMW%Z%WWMN

=1

<é.

0 |

Le(Q)

Moreover, there exists {u'(-)} C Una such that for anyk =1,... N and h°(-) € C (),

(2.4) /Qho(x)hk(x,ul(z)) dx—>/de/(]ho(m)hk(x,v)cr(:c)(dv) asl — +o0.

Proof. For any x € ), we set

and



6 HONGWEI LOU

Then &£(x) is bounded. Moreover, it is easy to see that
(ha(2),... .hn(x)) € co E(x),

since Zf;l aihi(z) + ¢ < 0 for any (a1, ... ,an,c) € RNt! such that
N
Zaizi—i—cgo YV (z1,...,2n) € E(x),
i=1

where co(A) denotes the closed convex hull of set A C RY. Therefore, by the
Carathéodory theorem (see [25, p. 139], for example), for any x € , we have &;(z) > 0
and z' = (z;1,...,2zin) €0 E(z) (i=1,...,N + 1) such that

N+1
Z &i(z) = 1,
and
) ) N+1
(h1(z),... . hn(2)) = Z b ()"
i=1

Consequently, there exist 4;(z) € U (i =1,... ,N + 1) such that

~ N+1

=1

Let
N+1
X:{(al,... cani) ERVMa; > 0,1<i<N+1, ) ap =1 }
k=1

Consider the multifunction T': Q — 2X*U™™" defined by
F(x): (051,...,OéNJrl,’Ul,...,UN+1)€XXUN+1|

B N+1
|hk(‘r) - Z Oéihk(x,'l]i” < 6ak = 17 7N }

i=1

Then I'(-) is measurable and takes nonempty closed set values. By Theorem 2.23 in
[13, Chapter 3] (see also [10]), we have measurable functions «;(-) : @ — [0,1] and
w;(:) €Upq (i =1,...,N +1) such that

N+1
Z a;(z) =1,
and
~ N+1
(2.5) hi(x) = Y oi(@)he(z,ui(z)| <6, k=1,...,N.
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That is, (2.3) holds.
Now, we turn to prove (2.4). By (2.3), it suffices to prove that there exists a
sequence u'(+) € Uyq such that for any h(-,-) € L*(Q; C(U)),

N+1

(2.6) lim h(zx, ) dz —/ Z a;(x)h(z,0;(x)) de.

l—+4o0 Q

We will prove that u!(-) can be chosen as
ul(x) = (), reQ i=1,...,N+1,
where
Q! is measurable, i=1,... ,N+1,
QAN =0 ifi#]
and

N+1

U=

i=1
That is, we want to prove that

N+1 N+1

(2.7) zliinoo Z h (z,4;(x)) dx —/ Z a;(x)h(z,0;(x)) de.

To prove this, it is enough to prove that for any g;(-) € C(Q) (i =1,... ,N + 1),

N+1 N+1

(2.8) Z/ gi(x da:—>/ZgZ z)oy(x

Now, we construct the sets QL.
For each I > 1, we have Q = Z , where

Qé is measurable, j=12... ,N,1=1,23,...,
QNQL =0 ifj#m,

and

1
O<diam(Q§-)§Z, j=1,2,...,N;,1=1,2,3,....

Furthermore, we can decompose Qé as

Qé = Ql1,j U e UQIIV+1,J'7

with Q being measurable,

é,anin,j:q) if i # m,
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and
Q= [ aile) o
Q;
Let Q! = U;Vll . Then, for any g;(:) € C(Q) (i=1,... ,N +1), we get (2.8) from
the following;:
N+1 N+1 N;
/ 291 av dl'* ZZ/ dx
=1 j=1
N+1 N, 1
— Z 297 T / a;(x) dx+0<w<l)> (where z; ; € Qé)
=1 j5=1 l
N+1 N, N+1 N, 1
-3 St +o((7)) - X L [, st wro(o(3))
i=1 j=1 =1 j=1
N+1
—Z/ gi(x dm—i—O( ( ))

where

w(r) = max Z|gz(x)—gz(§c)| —0 asT — 0.

Consequently, we get (2.8). By this, we can obtain (2.4) easily and complete the
proof. 0

The relaxed problem corresponding to Problem (C) is the following.

Problem (R). Find a 6(-) € R(Q;U) such that

ol = il ()

(2.9) J(o()) = / dx /U £ y(z),v)o (@) (dv),

@
=
e

=

=
Il

y(+;0(+)) is the solution of the following equation:

(2.10) _diV< Vyl) Yy ) /f Yo(z)(dv) in €,

Yloa = 0.

It is easy to verify that the maps (z,y,0) — [, f(z,y,v)o(dv) and (z,y,0) —
fU x,y,v)o(dv) have the analogous (S3) and (S4) propertles Moreover, by iden-
tlfymg u(-) € Ugq with Dirac measure-valued function 6,y € R(§;U), Uaa can be
looked upon as a subset of R(€2;U). On the other hand, if for some o(-) € R(Q;U),
o(x) = by(y) for almost all x € €, then u(-) must be measurable, that is, u(-) €
Uaa. Tt is easy to see that J(0y(.)),y(-;6u(y) defined by (1.2), (1.1) are equal to
J(u(+)),y(-;u(-)) defined by (2.9), (2.10), respectively. Therefore, the notation J(o(+))
would not cause any confusion. If an optimal relaxed control &() corresponding to
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Problem (R) has the form 6., then %(-) must be an optimal classical control corre-
sponding to Problem (C). This idea can be used to get the existence theorem of an
optimal classical control (see [16], [17] for such results in semilinear cases).

When using relaxed control to get the Pontryagin maximum principle for an
optimal classical control, one needs to prove that

2.11 inf  J(u()) = inf J(o(+)).

(2.11) oot Jl) =t T e0)

In the next section, we will prove the above relationship and give some basic properties
of states.

3. Approximation lemma. In this section, we want to prove (2.11). First,
let us state a lemma which shows that (2.10) (as well as (1.2)) is well posed for any
o(-) e R U).

LEMMA 3.1. Let (S1)—(S3) hold. Then for any e € [0,1], o(-) € R(Q;U), there
exists a unique weak solution y.(-) = y.( o (-)) € WP (Q) (N L=2(Q) of the following
equation:

: V.
—div x, 52+V52)
(w( Ver+ | Vyel?) SR

_ / £, 9e(2), v)o(2) (dv) n Q,
U

(3.1)

Yeloo = 0.

Moreover, there exists a constant C > 0, independent of ¢ € [0,1] and o(-) € R(;U),
such that

(32) [yl < C.

Hereafter, y.(-;0(+)) denotes the solution of (3.1) corresponding to o(-). The
existence of a solution in the above lemma can be proved by the Schauder fixed point
theorem, while (3.2) can be obtained by the De Giorgi-Moser estimate. We omit the
proofs since it is similar to that of Theorem 6.11 in [13, p. 78].

The following lemma is a special case of Theorem 1 in [14], which shows the
regularity of solutions to quasi-linear equations.

LEMMA 3.2. Let (S1)-(S2) hold, ¢ € [0,1] and v(-) € L>®(2). Suppose that
y=(-) € Wy (Q) is the solution of the following equation:

o 2 2 Vye — 1
(3.3) div (cp(x, Ve + |Vl )\/W ) v in Q,

ys|aﬂ =0.

Then there exists a constant C > 0 and « € (0,1) dependent only on P, A A Q and
the upper bound of ||v|| L= (q), independent of € € [0,1], such that y.(-) € C1*(Q) and

(3.4) [vellcre(ey < C.

By Lemma 3.1, for any o(-) € R(Q;U), the corresponding solution y.(-;o(-)) to
(3.1) is bounded uniformly in L°°(€2). Thus, by (S3), for any o(-) € R(Q;U), the
right-hand term in (3.1) is bounded uniformly in L*°(2). Then, using Lemma 3.2, we
get the following proposition.
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PROPOSITION 3.3. Let (S1)—(S3) hold. Then there exists a constant C > 0 and
€ (0,1), independent of € € [0,1] and o(-) € R(;U), such that

(35) e (50D lleray < C.

LEMMA 3.4. Let 1 < p < +o00, ¥(-) € C[0,+00) (N C*(0,+00) satisfy 1(0) =
Moreover, there exist A > X\ > 0 such that

(3.6) AsP™2 <4/ (5) < AsP™? Vs € (0,+00).
Then, there exists a constant C = C(p, A\, A) > 0 such that for any a,b € R™,

Cla—bpP  ifp>2,
60 (vlab s vy ) (o b)z{' A

a—b|? .
CW lf].<p<2

The above lemma can be obtained with the same argument to that of Lemma

1 in [24] by taking a;(z,n) = ¢(|n\)|%1| and £ = 0. (This last fact implies that the

inequality holds without the term 1, in the case 1 < p < 2.)

Now, we give the main result of this section.

LEMMA 3.5. Let (S1)-(S4) hold. Then for any o(-) € R(;U), there exists
{ug(-)} C Uyuq such that

(3.8) J(ug()) = J(o()) as k — +o0.

Consequently, (2.11) holds.
Proof. Denote y(-) = y(-;0(-)) and

(hl(x7v),h2(x7v)) = (f(x,y(x),v)fo(ac,y(x)m)).

Then h; € L>®(Q;C(U)) by Lemma 3.1 and (S3)—(S4). Thus, by Lemma 2.4, there
exists {ur(-)} C Uyq such that

69) Jin_ [ K@) w6 dz—/da:/ BO(@) f(x, y(@), v)o (@) (dv)
v RO(+)

and

(3.10) tim_ [ P sta) ) de = [ do [ @@ 0@ @)

k——+oo Q

Then it follows from y(-) = y(-; o(+)) that

(3.11) {—div(< IVyDIv |) F(@,y(@), u(@) + (@) in Q2

yloa =0,

where

{Q I

(3.12) kEI—lI-loc ; RO (z)ry(z) dz =0 vV RO(-) € C(

)-
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Let yi () = y(-;ur(r)), ie.,
Vg

(3.13) { —div (‘P(xv IVykl) IVygl) = f(z,ye(2),ue(z))  inQ,

Ykloa = 0.

By Proposition 3.3, yx(-) is uniformly bounded in C'*%(Q)). Thus, at least in the
sense of a subsequence, we can suppose that

ye() — () uniformly in C'(€).
Thus, by (3.11) and noting that
(@, y(2), ur(2))] < C,

we have
[ @)@ - g(e) do
Q
= [ e VL V=) do = [ (=0 v(e). (o)) de
— 0 as k — +oo.

Thus, by (3.11)—(3.13) and (1.4), we get
Vg
| (ole 93D = o [V ) - Vo =) o
< [ n@) (@) ~ @) de

< / (@) (u(z) — §(x)) d + / (@) (5(2) — u()) do

Q

— 0 as k — +oo.

Then by Lemma 3.4, we get that
g(z) = y(x), a.e. ().
Therefore,
ye() — y() uniformly in C*(Q),

not only in the sense of a subsequence. Finally, by (3.10),

/f z, Yy (x), up(x)) da
= [ (Pt i) - (o). nw@) o
/f (e, y(@) (@) da
since

| (s ye (@), u () = fO(,y(2), u(@)] < Clyw(@) - y(2)l,

for some constant C' > 0. Thus, we get the proof. O
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4. Maximum principle for optimal pair to approximate problem. We
will yield the maximum principle for Problem (C) from that for corresponding ap-
proximate problems in the next section. In this section, we consider the corresponding
(relaxed) approximate problems.

Let @(-) € Uyg be an optimal control to Problem (C), and let §(-) € W, (2) be
the optimal state corresponding to u(-). For e > 0, 7 € (0,1), consider (3.1) and

(4.1) Jrelo(r)) = /Qdm/UfO’T(;v,ys(m),v) o(x)(dv),
where o(-) € R(:U), y=(1) = y:(0()),

Tp(v, u(z))

0T (r y.v) = 2. y.v ol uz)
(42)  f(xy,0) = .y, )+1+p(v,ﬂ(ﬂf))

YV (z,y,v) € QxR x U,
and p(v,w) denotes the distance between v,w € U. We want to find the necessary
condition of a 7, .(-) € R(Q;U) satisfying

(4.3) Jre(0re(0) = o(~)€i7%£Q;U) Jre(o(2)).

First, we give the following lemma, which shows the existence of such &, .(-)’s and
the relation between &, (-) and a(-).
LEMMA 4.1. Suppose that (S1)—(S4) holds. Then for any T, € (0,1), there exists
adr:(-) € R(QU) satisfying (4.3). Moreover (as e — 07),
Gre() X b5y In R(QU).

Proof. By Proposition 3.3, there exist positive constants C' > 0 and « € (0, 1),
independent of € € (0,1), such that for any o(-) € R(;U),

(44) Iy (0 (Dllcra) < C.
Thus, it follows from (S4) that

inf  Jr.(o()) > —o0.

o()ER(ABU)
Let 0,0 1(-) € R(2;U) satisty
li T T *)) — inf T *))-
Jim Tk ()= (o ()

Let yrer(-) = ye(-;0r6k(-)). Then by (4.4), we can suppose that
Yre k() = Ure(?) uniformly in C(Q),

without losing generality. By Lemma 2.3, there exist ,.(-) € R(Q; U) such that (as
k — +00),

oren() LG () i REU).

Consequently, it follows from Lebesgue’s dominated convergence theorem that for any

. vyTsk
lim x,4/e2 + |Vy, 2> = -V dr
Jdim [ o2 el ) et v
- Vire
- 2\ /e2 + Ve 2) e vy da
o V) Vi




OPTIMAL CONTROL FOR DEGENERATE ELLIPTIC EQUATIONS 13

Moreover, there exists a subsequence o . 1, (-) (which may be different for different
Y(-)) of o7 ¢ k() such that

k—-+o00

/Qd”/@” (2, r.e(7),0) Fr.c(2)(dv).

(4.5) Jim /de / B(2) (s Yroesy (2),0) T, () (d0)

This means that g o(-) = ye(-;0-(-)). Consequently, as (4.5), we can get

kET J‘r E(UTE k( )) = JT,E(a-T,E('))'

That is, 6, (-) satisfies (4.3).
Now, we turn to see the relation between 67,6(-) and u(-). Let

(4.6) Iot) = ot + [ do [ 17 1+p Sﬁ? o()(dv).

By a similar discussion to that above, we can get a 7,(-) € R(Q;U) such that (as
e—0T)

(4.7) Gre() G () i RO
and

Le ()= b T(e())
Thus,

On the other hand, by Lemma 3.5,

J(ba(y) < J(3-(-)).

Combining the above two inequalities, we have

/ /1Tpvvuu 7. (x)(dv) = 0.

M5 z){av) = a.e. T
/Ul—|—p(v’ﬂ(x)) 7(z)(dv) =0, ez €.

By Lemma 4.2, which we will prove later, we have

Therefore,

5’-,—(.’L‘) = (5@(95), a.e. x € .
Thus, it follows from (4.7) that (as e — 07)
_ N
0'-,—’5(~) — 571(.).

The proof is completed. 1]
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LEMMA 4.2. Suppose that p € M (U) and

(4.8) /U % (dv) = 0,

for some w € U. Then = 6,.

Proof. If p is an infinitive additive probability measure, then it is natural to
get u = &, from (4.8). Yet, generally, for a nonnegative finite additive measure
p and a nonnegative function h(-) on U, one cannot get h = 0, p a.e. U, from
Sy h(v) p(dv) =0 (see [8]).

To prove the lemma, we need to prove that
u{v € Ulp(v,w) > 0} = 0.
By (4.8), for all a >0,

p(v,w) «
U > =0
,u{ve ‘1+p(v,w) - 1+a}
That is,
u{v € Ulp(v,w) > a} =0 YV a > 0.

Let A = {v € Ulp(v,w) > 0}, Ay = {v € U|0 < p(v,w) < a} (o > 0). Then, A, A,
are open. Consequently, A, A, € F, and

w(A) = p(Aq) YVa>0.

Noting that u is regular for all § > 0, there exists B, D € F such that
c(B) C ACint(D), w(D\B)<Sé.
Since w ¢ A, w & cl(B). Therefore there exists a 3 > 0 such that
{v e Ulp(v,w) < B} Ncl(B) = 0.
On the other hand, A C int(D) C D. Thus,
(D\B) 2 (4\ B) 2 4.
Therefore,
6> u(D\ B) = ju((D\ B)\ 4g) + u(Ag) = nlAg) = u(A).

Consequently, p(A) = 0. We get the proof. d

Now, we give the necessary condition of optimal pair (g c(-),d-¢(-)) in the fol-
lowing lemma.

LEMMA 4.3. Let 1,e € (0,1). Suppose that (S1)—(S4) hold, 5..(-) € R(;U)
satisfies (4.3), Ure(-) = ye(+;G-2(+)). Then there exists a ¥, (") € We2(Q) such that

~div { lso(x, VEF VG (I . VyT,EWyT,a)T)
..

VeEr+ [V [? €2+ |Vre|
- Vire(Vire)"
2 2 S ITENY ITE)
= /U [fy(xa Yr,es U)QLT,E - fg(% Yr,e 'U)] a.T,E(x)(dU) in €,

oo =0,

1/_}7',5
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and

NN CR105),
@10) [ do [ |70, 0)0nc(0) = Pangcto)n) - AN
(0(2) ~Frc()de) SO Y o() € R(:U)

Proof. The proof of the above lemma is quite standard, relatively easy, and similar
to the proof of Theorem 3.1 in [3]. It can be got quite directly from

0< JT,E(&F,&(') + 5(0(') - 57,5('))) - J'r,e((}f,s('))
Vo()eR(QU), §€(0,1).

We give a sketch of the proof. Let o(-) € R(;U), gf)s(.) = Grc(-) + 6(c(-) —
0r.e()). Then Jfﬁ,g(') € R(;U), and we have

0 < J,e(00 () = Jre(@())  ¥o() €REQT), 6€ (0,1).
Let 32 _(-) = y-(-;0 .(-)). Denoting

ML) = V() + 1V () = Vo (), te[0,1],

; pe /@M ) (et )"
A'rﬁ / I 2 6,t 2
0 2 g2+ |n7el

€2 + |n%t

St (0 6t\T
+¢s (m €2+|an2|2> 777;’6 (mft) = | dt,
e2 + nrel

1
bi>EL[A.@@mm+t@%ymxwdﬂam@xmx

=/fwﬁ@wwm—@Amwm
U

and
5 _
Yre — Yre
ys — Zme  ITE
T,E 6 )
we have
(4.11) { —div(AS VY2 ) =8 Y+, i
T,E}(’)Q =0.

On the other hand, by Proposition 3.3,

(4.12) 192, Ol @y 157, (llora@y < ©
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for some C' > 0 independent of ¢ € (0,1). Consequently
In2tlga@ <C  Vtelo1].

Therefore, for some g > 0

(413) HAis”C[’(Q;R"X") < Ca

and by (S3)

Hbfsr,sHLoc(Q) < Ca

16, cll (@) < C.
Then it follows easily from (4.11) and (S2) that
Y2 w2y < Ce
for some positive constant C., independent of §. Thus (as § — 07),
(4.14) Yo o =re + Y. = Ure strongly in W, %(Q).
Combining (4.14) with (4.12), we get that
yi)s — Yre uniformly in C*(Q).

Therefore, at least in the sense of a subsequence,

— _ _ T
A?—a AL @(1’7 V €2 + |vy7,s|2 ) 7_ Vir,e (V?T’E)
’ ’ VE2+ V|2 €2+ |Vyr|?

- Vire (Vire)"
2,0 /2+|Vire|? | 05
[Viirel > 2+ V.|

uniformly in C'(£; R™*™),

+
i3
7N

e =bre = [ 1@ G0 (@) o)
strongly in L*(Q),
o= e = [ F@5000) (0a) = arefa))(d0)
strongly in L*(Q).
Consequently,
(4.15) YT‘S,E(-) —-Y() strongly in W, %(Q),
with Y'(+) being the solution of the following equation:

(4.16) { —div(A;.VY) =b- .Y +c.c inQ,

Yo = 0.
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Since Y (-) € Wy*(2) is the unique solution of (4.16), we really get that (4.15) holds
not only in the sense of a subsequence, though the convergence of a subsequence is
enough in application. Now, it follows from the following inequality,

1

0< = (Jre02 () = Tre(@7.2())

:/Q{YT‘TE/U Uolfyo(x,yf,ﬁt(yﬁ,g—ym),v) dt} o—T,E(x)(dv)} dx
+ /Q dz /U 1O (@41, v) (o) — 5rc (@) (dv),

that
(4.17) 0< /Q{Y(m) /U 10, Gr e (), 0) 5r.c() ()
O (2, Gro(2),0) (0(x) — Frc(x v .
s [ P (o) ,<>><d>}d

Let ¥, .(-) € Wy () satisfy (4.9). We get (4.10) from (4.17). O

5. Proofs of the main theorems. Now, we will give the proofs of Theorems
1.1-1.3. Let §r:(-),0r(+), and ¥, () be given in Lemma 4.3.
Proof of Theorem 1.1. By (S2), we have

o(x,s) > ]%sp_l V (z,5) € Q x (0, +00).

Forx € Q, 1,6 € (0,1), if

then
2 (Vr o) 'V VYL Vi)y

- Ve

T,4/€2 + VT)52>7+h7—)5.1'
*”< VETNIE ) e T e v
2

_ |V1ZT 5 A 2 — 2\ 22 n 2
> @@, /e + Vre ? ) : 2 e+ |Vre Vi |7
( | | €2+|vy775|2 pfl( | | ) | |

Otherwise,

2 (Vbr )TV VYL N

_ |VQZ75
Z, 52 + vyr,a 2 ) —F——t h‘r,a x E
4 ( v | | Ve + Vi ? (@) (€2 + |VFre[?)?
> 0, (x NENNT ) Vo el? = A2 + [Vire[2) 22 Vi o P

Thus, there exists a constant \g (independent of 7, € (0,1), z € Q) such that

2 (V@T,E)TVQT,EV??Z:EVJJT,S

_ quTE
5.1 x, 52+V752>|’+h75x :
61) o (/2 41V e el

p=2 -
> )\0(52 + |VQT,E|Q)T |vw77€|2‘
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Thus, it follows from (4.9), Proposition 3.3, and (S3)—(S4) that
(5.2) )\0/(6 VG 2) 5 Vi 2 da
< [ o [ 1@ G0 = £y} o))
= [ do [ 1260500V o))
Q U
< C’/ |1ZT,5(£E)| dx.
Q

Since 1 < p < 2, we get
AO/ |V, o|? dx
Q
2—p
<Ml + Vi Pl ) [ (4 Vi) (95, da

<C [ nata) ds
Q
Consequently,
(5.3) H’lEﬂEHWOl*Q(Q) <C.

Thus (see [1] and [26]), we can suppose that (at least in the sense of subsequence), as
e— 0T,

(5.4) Vre(:) = (1) weakly in W, %(Q), strongly in L?(Q).
Moreover,

(5.5) H/(Z}T||W&’2(Q) <C.

On the other hand, by Proposition 3.3, we can suppose that, as e — 07,
(5.6) Jre() = 5r()  uniformly in C'(Q).

By Lemma 4.1,

(5.7) Gre() 2 bay  in R(QU).

Then, it is easy to see that ¢.(-) = g(-). Denoting
H™(2,y,0,9) = f(z,y,0)¢ — [*7(z,y,0) V¥ (2,3,0,9) ER" xRx U xR",
by (4.10), for any o(-) € R(;U), we have

0= /de / H (2, §r.(2), 0, $r.c(2)) (0(2) — 570 (2)) (d0)
/ dx/ (&, Gre(2), 0, Ve (@) = H' (2, 5(2), 0, 67,o(2)) ) (0(2) = 7)) ()

+ [ do [ (@300 0500 0) = B @,5(0). 0.5 (0)) (o) = (@) )

n /Q da /U H (2, 5(2), 0, 82 (2)) (0(2) — 07,0 (2))(d0)
= Il + .[2 -|— Ig.
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By (5.3), (5.6), and (S3)-(S4), we have (as ¢ — 0T)
6.9 11<C [ do [ 150) = Hlo (@) + (o(@) + 7))
= 20| e(a) = ety [ (rele) +1) da =0,
Similarly,

(5.10) lim I, = 0.

e—0t

On the other hand, by (5.7), we have (choosing a subsequence if necessary)
(5.11) I — / dx/ H (2,§(x), v, 8- (2))(0(2) — 5, (2))(dv).

Q U
Combining (5.8)—(5.11), we get

(5.12) /dz/ (z,y(x (z) — fO7 (2, 4(x),v)] (0(z) = bu(a)) (dv)
Y o() € R(Q:U).

By (5.5), we can suppose that (at least in the sense of a subsequence), as 7 — 0T,

(5.13) P () — P(+) weakly in W, ?(Q), strongly in L2().

Then we have

/dx/Hx §(2). 0, 8(2)) (0(2) ~ Su0a)) (d0)

/ du / (@, §(x — @, 5(x), )] (0(x) — b)) (dv)
:Tli% dx/ (z,7(x () = fO7 (z,5(x),v)] (0(2) = baz))(dv)

Vo()eR(T).

In particular, for any v(-) € Uy,

(5.14) /Q [H(z,§(z),v(z),¥(x) — H(z,§(z), u(z),¥(z))] dz<O0.
Then it is easily to get that for any v € U,

H(x,y(x),v,9(zx)) < H(x,y(x), u(z), (), a.e. T € Q.

Since U is separable and H(z,g(x),-,1(x)) is continuous in U, we get (1.8).
On the other hand, by (4.9), (5.4), (5.6), (5.13), and g,(-) = §(-), we have

{5050 (S22 o )

= A[fy(x,ﬂ»ﬂ(x))i — fy(@,g,a(@))E(@) de V() € CF({Vy # 0}),

19
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where C°({Vg # 0}) is the set of C*°({Vy # 0}) functions having compact support
in {Vy # 0}. That is, (1.6) holds. By (5.6), for any v > 0, there exists an e, € (0,1)
such that

Vi@ <7 Voe{Vi=0} ce (0.
Thus, by (5.2)—(5.3), we get

A _
m /{V 0} |vw7—,5|2 dw<C Vee (0757)'
y:
Therefore
_ 2—p
| wipasS
{Vy=0}
Consequently,
/ |VQZT|2 dr =0,
{vyg=0}
/ |V|? dx =0,
{vy=0}
and we get (1.7). O

Proof of Theorem 1.2. Similarly, in this case, we have (5.2) and (5.6). By (1.10)
and the first inequality in (5.2), we have

o [ 02eta) do
< [ dn [ g i@t
< [ da [ 36500y ola)(@0)
<C /Q [¢rc ()| da.

Thus,
(5.15) / 72 (z) de < C.
Q

Then, by (5.2), (5.6), and (5.15), we get that for any Qo CC {Vgy # 0}, there exists
a constant C(€g) > 0, independent of 7,& € (0, 1), such that

(5.16) [Prcllwize) < C(Q)  Vee(0,1).
Thus, we have 1, (-),%(-) € W22 ({V§ # 0}) such that

Gre(-) = - ()  weakly in W'2(Qq) V Qo CC {Vy # 0},
as e — 0T, and

O () = o()  weakly in WL2(Q0) ¥V Qo CcC {VF # 0},
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as 7 — 0T. Then, we get (1.6). Moreover, similar to (5.14), it follows that for any
1}() € Uya,

(5.17) / [H (2, §(a), v(2), D)) — H(z,j(z), u(x), ()] dv < 0.

And consequently, (1.8) holds for almost all z € {Vy # 0}. a
Proof of Theorem 1.3. In the case that n =1 and 1 < p < 2, (4.9) becomes

6290 (ZL', \/ 82 + |g‘/r,s|2 ) ‘gfr,s|2<p5 (‘T7 \/ 62 + |g§',e‘2 ) 1[)’
+ —
(€2 + |7..1%)% e+ |7

[, b o] 3o e
,(ET,E (a) = '(/;7—75 (b) =0.

Let
(oo JFTIE) e (s FE)
em\Termer EFTRE Vre
Then
(5.18)
(z :/ (2, Yr,er 0)Ur e f (T, §r,e,v)] Fre(@)(dv), a<z<b,
) = W) (), w<o<b
Ure(a) =, (b) 0
where
B (& + 17,172

B VSRS B N Y R AR CRVER S )
By (5.3), we have
[¥rellctan < O,
and §,.() € I2(a,). By (S2),
Wre(z)| < CP72W (2)] Vo€ (a,b).
Thus, ¥, .(-) € L*(a,b). Then, by (5.18), we have ¥, .(-) € W2(a,b) — Cla,b].
Since h,.(-) € C(a,b), the second equation in (5.18) shows that ¥, () € C(a,b).

Thus, since 1, c(a) = ¥, (b) = 0, there exists a ¢, . € (a,b) such that wm.(cﬂg) =0.
Therefore, ¥, .(c, ) = 0. Consequently, noting that

hre(@)] <C (2 + 1717 7,
we get easily from (5.18) that

”\Tl're() HleOO(a,b) <C
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||1Z}T,E(')||W1~°°(a,b) < C.

Thus, at least in the sense of a subsequence, we have W.(-), ¥(-) € Wh9(a,b), 1, (-),
P(-) € Wy(a,b) (for all 1 < ¢ < 400) such that

Ure() = Up(-)  weakly in Wh9(a,b),
’LZJT,E(.) - ’JJT() Weakly in WOLq(a?b)’

as e — 0T, and

\I_/T() — \?() weakly in Wh4(a,b),

U (-) = () weakly in W, %(a,b),

as 7 — 0. Then, (1.11) follows easily from (5.18) and it follows from (1.11) that

U(-), (-) € WhH*°(a,b). Finally, (1.12) is just (1.8). We get the proof. g
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A NEW APPROACH OF STABILIZATION OF NONDISSIPATIVE
DISTRIBUTED SYSTEMS*

AISSA GUESMIAT

Abstract. In this paper we propose a new approach to prove the nonlinear (internal or bound-
ary) stabilization of certain nondissipative distributed systems (the usual energy is not decreasing).
This approach leads to decay estimates (known in the dissipative case) when the integral inequalities
method due to Komornik [Ezact Controllability and Stabilization. The Multiplier Method, Masson,
Paris, John Wiley, Chichester, UK, 1994] cannot be applied due to the lack of dissipativity.

First we study the stability of a semilinear wave equation with a nonlinear damping based on
the equation

u” — Au+ h(Vau) + f(u) + gu') = 0.

We consider the general case with a function h satisfying a smallness condition, and we obtain uniform
decay of strong and weak solutions under weak growth assumptions on the feedback function and
without any control of the sign of the derivative of the energy related with the above equation.

In the second part we consider the case h(Vu) = —V¢ - Vu with ¢ € W1>°(Q). We prove some
precise decay estimates (exponential or polynomial) of equivalent energy without any restriction on
¢.

The same results will be proved in the case of boundary feedback.

Finally, we comment on some applications of our approach to certain nondissipative distributed
systems.

Some results of this paper were announced without proof in [A. Guesmia, C. R. Acad. Sci. Paris
Sér. 1 Math., 332 (2001), pp. 633-636].

Key words. stabilizability by a nonlinear feedback, partial differential equation, wave equation,
Petrovsky system, elasticity, integral inequalities

AMS subject classifications. 35B40, 35170, 35B37

PII. S0363012901394978

1. Introduction. Consider the semilinear wave equation with a nonlinear inter-
nal dissipative term,

v’ — Au+ h(Vu) + f(u) + g(u') =0 in QxRT,
(P) u=0 on I'xRT,
uw(z,0) =up(z) and o/(z,0) =uy(x) in Q,

and the nonlinear boundary feedback,

u —Au+h(Vu)+ f(u) =0 in QxRT,
(P) u=0 on Iy xRT,
dyu+gu')=0 on Iy xR,

u(z,0) = up(x) and u'(z,0) =wui(x) in Q,

where 2 C R” (n € N*) is an open bounded domain with smooth boundary I' and
f,g: R— Rand h : R* — R are continuous nonlinear functions satisfying some

*Received by the editors September 12, 2001; accepted for publication (in revised form) September
11, 2002; published electronically March 19, 2003.
http://www.siam.org/journals/sicon/42-1/39497.html
TUFR de Mathématiques, Informatique et Mécanique, Université de Metz, ISGMP, Bat. A, Ile
du Saulcy, 57045 Metz cédex 01, France (guesmia@poncelet.sciences.univ-metz.fr).
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general properties (see Assumptions 2.1-2.5 below). In (P’), v represents the outward
unit normal to I' = T'g U T'y, where I'y and I'; are closed and disjoint. In this paper
A and V stand, respectively, for the Laplacian and the gradian with respect to the
spatial variables, ’ denotes the derivative with respect to time ¢, and R™ = [0, co].

The main goal of this paper is to show that strong and weak solutions to problems
(P) and (P’) decay to zero when t — oo and give some precise decay properties.

When h = 0 the bibliography of works in this direction is truly long. We can
cite, for instance, the works of Nakao [18, 21, 22], Kawashima, Nakao, and Ono [11],
Nakao and Narazaki [19], Nakao and Ono [20], Haraux and Zuazua [10], Pucci and
Serrin [23], and Zuazua [27], among others.

In [21], Nakao considered the following initial boundary value problem:

u — Au+p(u) + f(u) =0 in QxRF,
(P1) u=0 on I'xRT,
u(z,0) =up(z) and o/(z,0) = uy(x) in Q,

where p(v) = |v|%v, B > —1, f(u) = bulu|®, a, b > 0 (in this paper | - | denotes the
Euclidean norm in R and R"), and Q is a bounded domain of R"™ (n > 1), with a
smooth boundary T' := 9. He showed that (P1) has a unique global weak solution
if 0 <a<2/(n—2),n >3, and a global unique strong solution if o > 2/(n — 2),
n > 3 (of course if n = 1 or 2, then there is no restriction on «). In addition to
global existence the issue of the decay rate was addressed. In both cases, it has been
shown that the energy of the solution decays algebraically if § > 0 and it decays
exponentially if § = 0. This improves an earlier result obtained by the author in
[22], where he studied the problem in an abstract setting and established a theorem
concerning the decay of the solution energy only for the case a < 2/(n —2), n > 3.
Later on, in a joint work with Ono [20], this result has been extended to the Cauchy
problem for the equation

u” — Au 4+ N (2)u + p(u') + f(u) =0, (z,t) € R® x RT,

where p(u') behaves like |u/|?u’ and f(u) behaves like —bu|u|®. In this case the authors
required that the initial data be small enough in H'!x L? norm and of compact support.
Pucci and Serrin [23] discussed the stability of the problem

v — Au+ Q(z, t,u,u’) + f(z,u) =0 in QxRT,
(P2) u=0 on I'xRT,
u(z,0) =up(z) and u'(z,0) =u(z) in Q

and proved that the energy of the solution is a Liapunov function. Although they
did not discuss the issue of the decay rate, they did show that in general the energy
goes to zero as t approaches infinity. They also considered an important special case
of (P2), which occurs when Q(z,t,u,u’) = a(t)t*w and f(x,u) = V(x)u, and showed
that the behavior of the solutions depends crucially on the parameter a. If |a] < 1,
then the rest field is asymptotically stable. On the other hand, when o < =1 or a > 1
there are solutions that do not approach zero or approach nonzero functions ¢(x) as
t — o0.

Messaoudi [16] discussed an initial boundary value problem related to the equation

u” — Au+a(l+ |/ |" ) 4 bululP 2 =0 in QxR



26 AISSA GUESMIA

where a, b > 0, m > 2, p > 2, and proved that the energy of the solution decays
exponentially. The proof of this result is based on a direct method used in [3] and [5].

Concerning the boundary feedback case, problem (P’) with h = 0 has attracted
considerable attention in the literature and, in recent years, important progress has
been obtained in this context. New techniques were developed which allow us to
stabilize a system through its boundary or control it from an initial to a final state
(controllability). There is a large body of literature regarding boundary stabilization
with linear feedback; we refer the reader to the following works: Lagnese [13], Russell
[24], Triggiani [25], and You [26]. Now when the boundary feedback is nonlinear
we can cite the works of Zuazua [28], Lasiecka and Tataru [14], Komornik [12], and
Guesmia [5], among others. For such cases, the main purpose is to obtain the same
stabilization results when a boundary feedback of the form

ou+a(r)u+b(x)g(u')=0 on Iy xRT

is applied on a part 'y of the boundary I" of Q2 which satisfies certain geometric
conditions and a, b, and g are given functions, whereas no feedback is applied on the
other part of the boundary, i.e.,

u=0 on (I'\Tp)xRT.

However, when h # 0 very little is known in the literature; more general and recent
results in this direction were obtained in [2]. In this paper the authors established
well-posedness of the following large class of hyperbolic equations:

K(z,t)u" — Au+ F(z,t,u,v',Vu) = f()

with boundary conditions and initial data as in (P’), where K, F, and f are given
functions satisfying some hypotheses.

However, to obtain exponential stability of solutions using classical multipliers and
integral inequalities, they assumed some additional hypotheses on F' which require,
in particular, that F' is global Lipschitz with respect to its last variable, where the
Lipschitz constant is a function on ¢ and converges exponentially to 0 at co. This
is a strong hypothesis which is not satisfied if, for example, the function F' does not
depend on time ¢, as in our case.

Hyperbolic-parabolic equations are interesting from the point of view of not only
the general theory of PDEs but also to applications in mechanics. For instance, the
transonic Karman equation

vu' — Au=0

models flows of compressible gas in the transonic region where the velocity of gas
varies from subsonic values to supersonic ones (see [2] and the references therein).

We note that stability of problems with the nonlinear term h(Vu) requires careful
treatment because we have any information neither about the influence of the integral
Jo h(Vu)u' dx on the norm

I gayaon = [ (@0 + | Vuta ) do

nor about the sign of its derivative; that is, the energy F defined by (2.7) is not
necessary decreasing (see identities (3.2) and (5.1)). Decrease of energy plays a crucial
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role in studying the asymptotic stability of the solution, as it was considered in the
prior literature, in particular, in the works cited above.

We also observe that our problem deals with nonlinearity, which involves the
gradient combined with a nonlinear feedback. This situation was not previously con-
sidered and leads to new difficulties. In order to overcome these difficulties and obtain
energy decay estimates, we give a new and direct approach based on a combination
of some ideas given by Guesmia in [3, 4] and the multiplier technique.

In the case where h is linear we introduce a nonincreasing equivalent energy (see
(2.14)) and then, by the use of appropriate multipliers and a well-known lemma due
to Haraux—Komornik (see [12, Theorem 9.1]), the exponential and polynomial decay
estimates are proved. In the case where h is nonlinear, the introduction of a such
equivalent energy seems to be not possible. In this case, the main ingredient for
proving the exponential stability is to obtain a generalized integral inequalities of the
form

) [& E(t)dt < ai(E(S) + E(T)) + as(E(S) — E(T))  V¥0<S§<T < o0,
E'(t) <asE(t)  Vt>0,

where a;, ¢ = 1,2, 3, are nonnegative constants and where E stands for the classical
energy (2.7). Then we show that if, in addition, 2a1a3 < 1 or a1 < ag, E must
converge exponentially to 0 at co.

Notice that a positive function satisfying (x) does not necessarily converge to 0
at oo; if ajaz > 1+ agas, then the function E(t) = e satisfies (*). As an open
question, it would be interesting to know what happens if ajas € [,1 + azas[ and
a; > as.

The integral result (%) gives a generalization to the Haraux—Komornik lemma,
which concerns nonincreasing functions (that is, ag = 0).

The rest of this paper is organized as follows. In section 2 we establish assumptions
and state our main results. In section 3 we obtain the uniform stability of (P). In
section 4 we consider the case h(Vu) = —V¢ - Vu, where ¢ € W1H°°(Q) and - denotes
the scalar product in R™, and we prove some decay estimates of equivalent energy
of (P). In sections 5 and 6 we prove the same results for (P’). Finally, in the last
section we give some applications of our approach to Petrovsky, coupled, and elasticity
systems.

2. Assumptions and main results. We begin this section stating the general
hypotheses.

Assumption 2.1 (assumptions on f). f : R — R is a C' function such that
f(0) = 0 and, deriving from a potential F, that is

F(s):/osf(a)do Vs € R,

(2.1) F(s) > —as® Vs € R,

with 0 < a < %, where ¢p is the smallest positive constant (depending only on )
such that (Poincaré’s inequality)

(2.2) / ’v|2dx < ¢ / ’Vv|2dx Vv € H} ().
Q Q

Also, there exists b > 0 such that

(2.3) 2bF (s) < sf(s) Vs € R.
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Assumption 2.2 (assumptions on g). g : R — R is a C! function, nondecreasing,
g(0) = 0, such that

(2.4) g(s)s >0 Vs # 0.
Also, there exist two positive constants ¢; and ¢, such that
(2.5) c1ls| < g(s)] < eals] Vs € R.

Assumption 2.3 (assumptions on h). h: R™ — R is a C* function such that Vh
is bounded and there exists G > 0 such that

(2.6) RO < BI¢l V(R
We define the energy of the solution of (P) by the formula

(2.7) E(t):/ (|u’|2+|Vu}2+2F(u)) de, teRT,
Q

Remarks. 1. If the function f is increasing and f(0) = 0, then (2.1) and (2.3) are
satisfied with ¢ =0 and b = %
2. Condition (2.1) assures the following inequality:

(2.8) | (u, u’)||§lé(me2(Q) <kE() VteR",

where k = -——L— > 0. Indeed, (2.1) and (2.2) imply that

1—2aco

E(t) > / (Wf I |Vu|2 _ 2a|u{2) dx
Q
> / (‘u’|2 +(1- 2aco)|Vu|2> dx
Q

> (1— 2aco)/Q (W’? + |Vu|2> dr = (1-— 2GCO)H(U7UI)”?&I&(Q)xH(Qy

which gives (2.8).

3. Under Assumptions 2.1, 2.2, 2.3 and using analogous considerations like the
ones used in [2] (we omit the details), we can use Galerkin’s method (semigroup theory
is not suitable to treat degenerate problems) and prove that problem (P) possesses a
unique strong solution, u :]0, oo[— R, such that

(2.9) u e L2(J0, 00 Hy () N H*(Q)),  u' € L=(]0,00[; Hy (),
and
u” € L™(]0,00[; L*(Q)).

Moreover, supposing that {ug,u;} is in H}(Q) x L?(Q2) and using density argu-
ments, we can show that (P) has a unique weak solution u : 2x]0,00[— R in the
space

(2.10) C(]0, oa]; Hy () N €1 (J0, 00f; L*(2)).
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Now we are in position to state our first main result.
THEOREM 2.1. Assume that Assumptions 2.1, 2.2, 2.3 hold such that b < 1 and
B satisfies the following smallness hypotheses:

B 2\? coc23
2( c0+<cl) +\/%>+ eV <1-4b,

or

NN 2 o 2\ Vvas

Then the energy determined by the strong solution u decays exponentially. That is, to
say for some positive constants c,w, one has

/6) < b k\/% < i 1 CoC2

(2.11) E(t) < cE(0)e "  VteR™.

Furthermore, (2.11) holds for the weak solution u.
Remark. If F is positive (for example, sf(s) > 0 for all s € R), then § and b can
be taken such that b > 0 and

2
g( co+(c2> +(1+2k2)\/a>+ wc2b g g b

1

ﬁ (2 )2 CoCQﬁ k\/a 1 1 CpC2
Sl (=) + + <1, <— 4= :
2( o+l ) TV 92 2 = 2\ V23

We consider now the case h(Vu) = —V¢-Vu, where ¢ € W*°(Q) and g satisfies
a hypothesis weaker than (2.5).

Assumption 2.4 (assumptions on g). ¢ : R — R is a C'* function, nondecreasing,
g(0) = 0, such that (2.4) holds and there exist four constants r, p > 1 and ¢1, co > 0
such that

or

(2.12) 1 min{|5|,|s|T} < |g(s)| < camax{|s %,|s|p} Vs € R,

(2.13) (n—2)p<n+2.

We have the following stabilization result.
THEOREM 2.2. Let u be a solution of (P) in the class (2.10). Under Assumptions

2.1 and 2.4, there exist two positive constants w, ¢ such that the equivalent energy of
(P), defined by

(2.14) E(t) = / e?) (]u’f +|Vul® + 2F(u)) dz,  teRT,
Q
satisfies (2.11) if r =1, and

-2

(2.15) E(t) <c(l1+t)™r vt e RY

ifr > 1.
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Remarks. 1. If we take g(s) = as for all s € R with a > 0 (that is, r = p = 1),
then we find the results obtained in [15]. On the other hand, the case of g(s) =
a(l + |s‘m_2)5 for all s € R with m > 2 (that is, p = m — 1 and r = 1) gives the
results obtained in [16].

2. In Theorem 2.1 we can weaken assumption (2.6) by taking § as the Lipschitz
constant of only the nonlinear part of h; that is, we assume that there exists { € R™
such that

|h(Q)+¢- ¢ <BIE] V¢ eR™

To prove this we have only to consider the equivalent energy defined by (2.14) where
b(z) = C - .

3. It is possible to weaken the growth assumption (2.12) as was done for the study
of elasticity systems in [3, 7] and the Petrovsky system in [6]. In order to simplify we
shall only consider in this paper the case of assumption (2.12).

Now we are concerned by the stability of (P’). In order to obtain the estimates
(2.11) and (2.15), the following assumptions are made on I' and f. Let z° be a fixed
point in R™. Then put

m=m(z) =z — 2°, R = max|m(z)|
e}

and partition the boundary I' into two nonempty sets:
I'o={xel: m(z) v(z) <0}, I'={zel: m(z) v(z)>¥§>0}

Ezamples. Concerning the existence of such a partition of I', we can take €2 as
follows:

1. If n = 1, then Q is a bounded open interval, say Q =]z, 23[C R, and our
geometric hypotheses are satisfied in each of the following two cases:

(i) To = {z1}, T1 = {22}, and 2° < 21,

(ii) To = {z2}, I'1 = {z1}, and 20 > z.

2. Ifn>2and Q = O\ Qo, where Q1 and Qg are two open domains with
boundary I'y, and Ty, respectively, Qy C Q;, and Q; and € are star-shaped with
respect to some point 20 € €y (a domain Q is called star-shaped with respect to 20 if
m - v > 0 on 0N), then our geometric hypotheses are satisfied.

3. If n > 2 and (2 is not of the form mentioned in the preceding example, then
in general there is no point z" satisfying simultaneously the geometric hypotheses
assumed on I'y and I'y. By applying an approximational method, one could consider-
ably weaken these geometric hypotheses, at least in dimensions n = 2, 3, by adapting
an analogous argument given by Komornik—Zuazua for the wave equation (see [12]
and the references therein).

Assumption 2.5 (assumptions on f). f:R — Ris a C! function such that (2.3)
and

(2.16) F(s)>0 VseR

The well-posedness of the problem (P’) can be established by standard Galerkin’s
method (see [15]); we do not discuss this point here. We use the notations

V={veH'(Q): v=0on Ty} and W=H*(Q)NV;

we have the following:
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1. For all (ug,u1) € W x V such that d,ug + g(u1) = 0 on I'y, problem (P’) has
a unique strong solution, u :]0, co[— R, such that

u € L®(]0,00[; W), u' € L>(]0,00[; V), and u” € L>(]0, 00[; L*(Q)).

2. If {ug,uy} is in V x L?(Q), then (using density arguments) the solution is
weak: u : 2x]0, 00[— R in the space

(2.17) (10, 00]; V) N C(]0, oo[; L*(£2)).

THEOREM 2.3. Let u be a solution of (P’) in the class (2.17). Assume, moreover,
that Assumptions 2.2, 2.3, 2.5 hold with 3 small enough and b > 1 or f is linear.
Then the energy of u, defined by (2.7), decays exponentially to zero in the sense of
(2.11).

We consider now the case h(Vu) = —V¢ - Vu, where ¢ € WH°(Q).

We have the following stabilization result for (P’).

THEOREM 2.4. Let u be a solution of (P') in the class (2.17). Under Assumptions
2.5, 2.4 with p = 1, R||VP||eoc < min{2,n}, and b > % or f is linear and
IV@|loo is small enough, where |Vo|loo = max,cq |Vo(x)|, the results of Theorem 2.2
hold true.

Remarks. 1. As an example of a function f satisfying Assumption 2.5, we can
take f(s) = ys|s|* " with y > 0 and ¢ > 1. Condition (2.3) is satisfied for all b < %1.

2. We have many possibilities to take the function g such that condtions (2.12)
and (2.13) are satisfied, for example, g(s) = ~|s[""1s if |s| < 1, and g(s) = ~s if
|s| > 1, where v > 0.

3. Thanks to (2.16), the function F is positive, and then the usual energy (2.7)
satisfies

(2.18) /Q (;u’]2 + |Vu|2) dx < E(t).

The quantity ( fQ‘VuFdx)% defines a norm on V' equivalent to the usual norm induced
by H'(9); consequently, V is a Hilbert space with this norm.

4. If h is nonlinear and r > 1, we do not know if the energy of (P) and (P’) decays
polynomially to zero.

5. In the case of uniform stability (Theorem 2.1 and Theorem 2.3), our proof
allows us to obtain explicit constants ¢ and w in (2.11).

6. Theorem 2.1, Theorem 2.3, and Theorem 2.4 probably remain valid without
the smallness conditions assumed on 3, but we could not prove them.

3. Uniform decay: Proof of Theorem 2.1. To justify all the computations
that follow, we assume first that the solution is strong, and by a standard density
argument we deduce the result for weak solutions.

We are going to prove that the energy defined by (2.7) satisfies the estimate

(3.1) E(S+Ty) <dE(S) VS eR*t

with 0 < d < 1 and Ty > 0. (This will be fixed later in the course of the proof.) Using
(3.1), inequality (3.9) below gives (2.11).
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We start this section by giving an explicit formula for the derivative of the energy.
A simple computation shows that

(3.2) E'(t)= —2/Qu’g(u’) dx — Q/Qu’h (Vu) dx.

Multiplying the first equation in (P) by v and integrating the obtained result over
Q x [S,T], we obtain

(3.3) 0= /S /Qu (" — Au+ h(Vu) + f(u) + g(u')) dz dt

= [/ uudx} / / — '] + |Vul® + uf (u ))dmdt
+/ST/ng(u’)d:z:dt+/ST/Quh(Vu) dz dt.

Hence, from (3.3), making use of the Cauchy—Schwarz inequality and taking assump-
tion (2.6) and property (2.2) into account, we infer

/ST/Q(|u'|2+|Vu|2+uf(u)) dx dt
S—{/uudw} //2|u’| ~ug(u)) de di
+2\%/S /Q|u|2dasdt+\;?/s /Q|h(Vu)|2d:cdt
g—{/uud:ﬂ} //2|u| ))dmdt

T
+@/ /qu\dedH—M/ /|Vu|2dxdt.
2 Js Ja 2 Js Ja

Then, taking assumption (2.3) into account, from this inequality we deduce

(3.4) /ST/Q (1> + (1~ By/a) [Vul* + 26 (u) ) e di

S—[/uudar] //2|u| — ug(u ))dmdt.

Using (2.2), (2.8), and the Cauchy—Schwarz inequality, we can easily get

1 s 1
uu’dw‘</( co v +u>daz
|[was| <5 [ (Ve + =

k
< Y2 [ (1P + 9ul) de < P42 )
2 /o 2
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then

_ Uﬂ uu'dxr < k\f (E(S) + E(T)).

S

Next, we insert this inequality into (3.4); it follows that

(3.5) /ST/Q (|u’|2 + (1= Byeo) |[Vul* + 2bF(u)> dz dt

< k\f (E(5)+E(T))+/ST/Q (2|u'|2 fug(u')) da dt.

Next, we want to majorize the last term in the right-hand side of (3.5).

Estimate for fg Jo (2|w'|? — ug(u’)) dx dt. Using (3.2) and the Cauchy—Schwarz
inequality and taking the assumptions (2.4), (2.5), and (2.6) into account, it holds
that

T
2/ |u|2da:dt<—/ /ug Ydx dt
s Ja Q
1 /7
== (—E’(t) — 2/ u’h(Vu)dx) dt
€1 Js Q

1 1 r 712 ﬁ2 2 .
o (E(S)— E(T)) + 671/5 /Q (e|u |“ + ?|Vu| > dx dt;

we choose € > 0 such that % = & —By/co, that is, e = g(\/cﬂco + 4+ ¢14/c); then
we deduce

IN

T
(3.6) 2/5 /Q|u'|2dxdt < é(E(S) — E(T))

+/6/ST/Q<;< CO*(E)Z\/%)'“/M;( c0+<021>2\/a>|Vu|2>dxdt.

Similary we have

/ / ug(u')dx dt < = / / ( )+ e|u2> dx dt
/ / = u'g(u') + eco| V| )dxdt
- 2

Co T 1_, eco
== —=E'(t)— [ «'h(Vu)dz | dt + — |Vu| dz dt
2e S 2 Q
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< 2 (B(S) - BE(T) + “O/ /|Vu|2dxdt

T /232
C2 €p 2 10
—= V — dx dt;
Jr26/5 /n( p VUl gl ) ot

and € = f%ﬁ It follows that

026

we choose € = (3

(3.7) //ug dxdt<F// U2+ |Vul?) dx dt

CoC2
+ 5 NeT: (E(S) — E(T)).

Combining (3.5), (3.6), and (3.7), we conclude that

(3.8) 1—5( co+( ) +\F> \/ﬁ ATL(|u’|2+|Vu|2)dxdt
+ b/T/ 2F (u)da dt

(k\ﬁ +— +;\/ﬁ?) E(S) + (Wa L 1VCOTQ> E(T).

2 C1 2 ﬂﬂ
Hence, if we take 3 small enough so that & (y/co + (c )2+ /co) + ,/00025 <1l-bas

it is assumed in Theorem 2.1, then, from (3.8) and making use of deﬁmtlon (2.7) of
energy, we arrive at

(3.9) /ST E(t)dt

k\/co 1/1 1 [coes
< QbO(E(S)+E(T))+b<Cl+2 jﬁg

) (B(S) — E(T)).

If F' is positive, then we assume that g( co + (%)2 + /co) + % < 1 and we
obtain (3.9) with b replaced by

5min{b,1§< c0+<2) +\F> c;\cjg}

Now we return to equality (3.2). Using (2.4), (2.6), (2.8), and the Cauchy-Schwarz
inequality, we infer

E) < —Z/Qu’h(Vu)da: < /Q <6|u'|2 + é|h(Vu)|2> dx
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<6 [ (WP +I9uP) do < BE();
Q
then
(3.10) E'(t) < BKE(t).

We may assume in the rest of this section that E(t) > 0 for all ¢ > 0. Otherwise
if E(ty) = 0 for some tog > 0, then from (2.8) we have u(tg,z) = u/(to,z) = 0 in Q;
hence v(t,x) := u(t + to,x) solves (P) with (0,0) as initial data. By the uniqueness
of solution we conclude that v = v’ = 0; hence E(t) = 0 for all ¢ > ¢y, and then we
have nothing to prove.

Now by Gronwall’s lemma, we conclude from (3.10) that

(3.11) E(t) < PHETE() YO<T <t < oo

On the other hand, (3.10) implies that

10
(3.12) B)> g ((1 - e’ﬁk(t’T))E(t)) VO< <t < oo
Now we distinguish two cases (corresponding to the hypothesis assumed on § in
Theorem 2.1).

Case 1. B < r\b/%. We fix

_ k2
(3.13) Tp > 6—;111 (1 _f ﬁ)

From (3.12) with 7 = S we have
S+To 1
/ E(t)dt > —(1 — e P*IO)E(S + Ty).
s Bk

Combining this inequality and (3.9) with T'= S + Ty, we arrive at

1 ey (L 1 Jac) kv
<ﬂk(1—e )+b<c1+2 ﬂﬁ) v )E(S+To)

< (kf + 2(011 +% f;g;)) E(S).

Thanks to our choice (3.13) of T, we have

1 k
—k(l — e PRT0) > ke

then we obtain (3.1) with

11,1 ky/eo
E( +3 f?§§>+ 5
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We note that if a nonnegative function £ : Rt — RT satisfies the estimate (3.1),
then it also satisfies (2.11). Indeed, let t € RT; then t = mTy + to with 0 < to < Tp
and m € N. From (3.1) and taking (3.11) with ¢ = ¢, and 7 = 0 into account, it holds
that

E(t) < dE((m —1)Ty +to) < --- < d™E(to)

< 7 1) PR B (0) <

then we deduce (2.11), where ¢ = —lnd
0

Case 2. k—‘g@ < é + % % Inequality (3.9) implies that

BkTy
“—— and w =

T
/ BE(H)dt < apB(S) Y0 <S<T < oo,
S

where ag = k‘z/b?‘) + %(% +3 %) Let T go to oo; we deduce

(3.14) / E(t)dt < agE(S) vS > 0.
s
Introduce the function
(oo}
¥(S) :/ E(t)dt, S >0.
s
It is positive and nonincreasing. Differentiating and using (3.14), we find that
1
ag
hence (In(y(S)))" < —%. Integrating in [0, S] and using (3.14) again, we obtain that

(3.15) ¥(S) < apE(0)e 35 VS > 0.

On the other hand, F being nonnegative and satisfying (3.12) (with 7 = 5), ¥(S5)
may be estimated as follows: let Ty > 0,

S+To

1o Bk(1-5)
> > — (1 = e Pk
W(S) > /S E(t)dt > /S i (e E(1)) dt
1 — e PFTo
=——FE(S+Tp).
i (S +To)
Therefore, taking t = S+7Tg and choosing Ty = ﬁ In(14+Bkag) (for which the quantity

/a . . .
% reachs its minimum), hence we deduce from (3.15) the estimate

(3.16) E(t) < (1 + Bkao) " 7% E(0)e 30! Wt > T,
This inequality holds, in fact, also for ¢ € [0,Tp]. Indeed, by (3.11) with 7 = 0, we
have
E(t) < #B(0) < e P* 3 B0)e 0" = (1 + Bkag)' #Fa0 E(0)e 0",
Then (3.16) holds true for all ¢ > 0 and hence the inequality (2.11) follows with

c=(1 Jrﬂkao)Hﬁ and w = %
This concludes the proof of Theorem 2.1.
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4. Energy decay estimates: Proof of Theorem 2.2. For the proof of Theo-
rem 2.2 which concerns the stability of (P) in the particular case h(Vu) = —V¢ - Vu,
with ¢ € WH2°(Q), we are going to prove that the equivalent energy E defined by
(2.14) satisfies, for any 0 < S < o0,

(4.1) t)dt < cE(S).

Here and in what follows we shall denote by ¢ diverse positive constants, by e diverse
positive constants small enough, and by ¢, diverse positive constants depending on e.
(All these constants do not depend on S.) The inequality (4.1) gives (2.11) and (2.15)
(see [12, Theorem 9.1]).

Using the first equation of (P) and the boundary condition, we can easily prove
that the equivalent energy FE satisfies

(4.2) E'(t) = —2/ @ g(u')de, teRT.
Q

Assumption (2.4) implies that the equivalent energy is nonincreasing. Given 0 < S <
T < oo arbitrarily, integrate (4.2) between S and T to get

(4.3) / [ e nigta)dn = 5 (B(S) - BT)).

We multiply the first equation of (P) by B (t)e?®)y and integrate over Qx[S, T
to get

T -
(4.4) / / BT (1)e?®) (|u’|2 +|Vul® + uf(u)) dzdt
S Q
r— 1 e (@) @) dadi]
+ E wu'dzdt — E (t)e?” P uu'dedt| .
S

The last two terms of (4.4) can be easily majorized by cE" % (S) (see [3] and [5]). We
follow now the proof given in [5]. We note ¢ = p+ 1,

e?@) (2’u | —ug(u )) dxdt

Ot ={zeQ: |v[>1}, and Q =0\Q".

We exploit the Cauchy—Schwarz, Holder, and Young inequalities and the Sobolev
imbedding H}(Q) C LI(Q) to get

T
—/ E7= (H)e*@ug(u')dxdt

S Jat

r :
§/ E'21(t)e¢(m)(/ |u|qu) (/
S Q+ Q+
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T +l
§/ ET ()e¢<m></ |u |qda:+c€/ pdx)dt
S Qt
T g
ge/ E™F (t)dt + c. BT / / e?@/ g(u)dadt
S Qt
+

< e/ST E* (1)dt + c. (E#(S) - ETTI(T)) .

On the other hand, using the growth assumption (2.12) and Poincaré’s inequality, we

have
L
T r—1 2
§/ E= (t)e?@ <e/ |ul daerce/ g2(u’)dx) dt

S Q- Q-

T r—1 (z) 2 T r—1 b(x), 1 , ,,il
Se/ E™ (t)/ e | Vul da:dt—i—ce/ E= (t) (e Iug(u)) dxdt

S Q- S Q-

< e/TET(t)dt +c (E(S)— E(T)).
S

g(u) 1

)e? @ ug(u')dadt

Taking the sum of the last two inequalities and substituting it into the right-hand
side of (4.4), using (2.3), and choosing € €]0, b[, we obtain that

(4.5) /STET (t)dt < C(E%(SHE(S)) +C/ST/QE7‘21(t)e¢<w>|u'}2dzdt.

Using another time (2.12) and (4.3), we have

T
/ E%(t)e¢(z)‘u’]2dxdt < BT ( / / e?@/ g(u)dadt
s Jo+ Qt
c (ET(S) - E%(T)) .

In the same way, using Young’s inequality, we get

T T 2
/ / BT (1)e?® ’u’|2d:cdt < c/ / E7T (1) (6¢($)u’g(u')) N dadt
s Jo- s Jo-
T, T
< e/ E= (t)dt + CE/ / e?@ o/ g(u')dadt
s s Jo-

<e /T E™ (t)dt + ¢ (E(S) — E(T)).
S

Substituting the sum of these two estimates into the right-hand side of (4.5), choosing
€ small enough, and letting T go to oo, we obtain

f)dt < ¢ (1 + E%”(o)) E(S) < cB(S);

then (4.1) follows, which gives (2.11) and (2.15) and finishes the proof of Theorem 2.2.
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5. Uniform decay: Proof of Theorem 2.3. In this section we prove the ex-
ponential decay of energy (2.7) for strong solutions of (P’), and by a density argument
we obtain the same results for weak solutions.
The proof is similar to the one given in section 3.

Using the first equation in (P’) and the boundary conditions, we can easily prove
that

(5.1) E'(t) = 72/ u'g(u')dx — 2/ u'h (Vu) dz.
I Q
Using Assumptions 2.2, 2.3, and 2.5, from (5.1) it holds that (see section 3)
() < —2/ W' (V) do < 5/ (1> + 1uf?) do < BE():
Q Q

then F satisfies (3.11) and (3.12) with k = 1 (see (2.18)). Following the proof given
in section 3, it is sufficient to prove that, for all 0 < S < T < o0,

T
(5.2) /S E(t)dt < a(E(S) + BE(T)) + a(E(S) — E(T))

with @, @ > 0 and 28a < 1 or a < G. Then the proof can be completed as in section 3.
To prove (5.2), let ¢y €]0, 1[ (will be chosen later in the course of the proof); we
multiply the first equation in (P’) by

2m - Vu + (n — eo)u,

integrating the obtained result over Q2 x [S, T] and using the boundary conditions. We
are going to estimate the terms of the result formula. We have

L= /ST /Qu"(Qm-Vu—l—(n—eo)u)da:dt
= {/Qu'<2moVu+(neo)u)dx]:/ST/Q<m~V(u')2+(n60) |U/|2)dxdt

T ) T ,
= eo/ / |u'|” dzdt — / / (m-v) [W|"dDdt
s Jo s Jry

—|—[/Qu’(2m-Vu+ (n— eo)u)dxr

We estimate the last term in this inequality; we have

S

/Q(Qm-Vu—l—(n—eO)u)de_/(Qm,vu)zdx

Q

_ /Q (0= co)? 1l + 200 — eo)m - V(w)?) da
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- /Q (tn = c0)? Juf® —2(n — co)n [uf®) da + 2(n — <o) / (m - v) [ul? dT

I

:(eo+n)(eofn)/Q|u|2dx+2(nfeo)/ (m - v) |ul* dT

Iy

<2(n—e)R [ |udl;
I

then

2
(5.3) / (Qm -Vu+ (n— eo)u) dx < / (2m - Vu)?dz +2(n — eo)R [ |ul*dr.
Q Q ry

Since, for all € > 0,

‘/Q(Qm -Vu+ (n— eo)u)u'dx‘

1
gf/ /| da + — /(2m~Vu)2da:+2(n—€0)R Jul? dr
2 Q 2¢ (9]

Iy

2R? R
< [(§r+ 2R waras) + Zo- e [ 1vaP
o \ 2 € € Q

where ¢ is the positive constant satisfying (Poincaré’s inequalit,
ymg q y

[v|?dT" < E/ |Vol2de  YveV.
Q

I

Choosing € = 2\/R(R + £(n — €)), we obtain

’/Q(Qm YVt (n— eo)u)u’dz‘ < \/R(R + g(n - eo)>E(t) = a1 E(t).

Then we deduce

T

(5.4) L > —ai(E(S) + B(T)) — R/

T
|u’\2drdt+eo/ /|u’|2d:cdt.
S Iy S Q

On the other hand, taking the generalized Green formula and recalling the identity
2Vu - V(m - Vu) = 2|Vul> +m - V(|Vul?)

(note also that on Ty we have Vu = d,uv), we infer

I := /ST /Q(—Au) (2m -Vu+ (n— eo)u)dﬂcdt

T T
= (2—60)/ /|Vu|2dxdt—/ / (m - v) |Vul|® dldt
s Ja s Jry

+ /ST /rl ((m V) |Vu|2 — (n — €)ud,u — 2(m - Vu)(?l,u)dl"dt.
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Using the definition of I'y and I'y, we deduce

IL>(2-¢) / /|Vu\ dxdt

T R2
—|—/ / (6 IVul> = (n — e)udyu — & |Vul” — 5(8yu)2> drdt;
Iy

S

then

5.5 L> (zeo)/ST/Qwuﬁdxdt/sT/Fl ((neo)uaqur]f(auu)z)dth.

Similarly, using (2.6), (5.3), and the Cauchy—Schwarz inequality, we have

I3 := /ST /Q h(Vu) (2m -Vu+ (n— eo)u)dmdt

T
—g/g /th(Vu dxdtf—/ <4R2/ IVul® dz + 2(n — €)R N |ul® dF>

we conclude that

T T
(5.6) Iy > —2ﬂR/ / |Vu|® dedt — é(n - 60)/ / |u|? dTdt.
s Ja 2 s Jr,

Using (2.3) and the fact that F' is nonnegative and F'(0) = 0, we obtain

I, = /ST /Q fu) (2m -Vu+ (n— eo)u)dxdt

(n—eo b/ /2F dxdt—i—/ /2m V(F (u))dxdt
> ((n—e€)b —n/ /2F dxdt—i—/ / m - v)F(u)dldt;
1Y

then we deduce

T
(5.7) > ((n—eo)b—n)/s /QZF(u)dxdt.

Now we distinguish two cases.

Case 3. If b > 1, then assuming that SR < 1 and choosing ¢y = min{l —
OR, ll;in} we deduce that min{eg,2 — €9 — 28R, (n — €9)b — n} = 9. Combining
(5.4)—(5.7), taking the fact that Iy + I> + I3 + I4 = 0 in account, we obtain

€ /;/Q(Iu’lz + | Vul® + 2F(u)>dmdt < a1 (E(S) + E(T))
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T 2 B 2 R?
+/ / (R || + E(H — o) |u]” + (n — €0)ud,u + 6(3yu)2) dldt.
s Jry

Case 4. If f is linear, f(s) = as for some positive constant «, then b = 1 and we
conclude from (5.7) that

T T T
I, > —eo/ / 2F (u)dxdt = 60/ / 2F (u)dxdt — 260/ / 2F (u)dxdt
S Q S Q S Q
T T
= eo/ / 2F (u)dxdt — 260a/ / |u\2 dxdt
S Q S Q
T T
> eo/ / 2F (u)dxdt — 260aé/ / |Vu|2 dzdt,
S Q S Q

where ¢ is the smallest imbedding positive constant satisfying
(5.8) / v dz < c/ Vol?dz  YveV.
Q Q

Assuming that SR < 1 and choosing ¢y = HM , then min{eg, 2 —eg — 28R —2epaé} =
€o and the same inequality obtained in Case 3 holds true.
We now use the boundary condition on I'y; we have in both previous cases

(5.9) € /S E(t)dt < ai(E(S) + E(T))

/ /pl <R ' + —g* () + g(n — o) [ul® — (n— 60)Ug(u’)) dTdt.

Using (5.1), the Cauchy—Schwarz inequality and taking the assumptions (2.4), (2.5),
and (2.6) into account, it holds that

/ ! / | (m’ﬁ " fﬂu’))dw dt < (R + i?) /ST /r vty
/ST <_E/(t) _ 2/Qu’h(vu)dx> dt

ot 5@) (E(S) — E(T)) + ; ( + c2> / / '+ [Vul?) da dt;

2
we note as := (£ + £ ¢,) and deduce

C1

T

(5.10) /ST /F (R|u’|2 + Jfg2(u’)>dx dt < ay (E(S) — E(T)) + ﬂag/s E(t)dt.
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Similarly, we have

- [ ' / (51— ugtu) s
n—eo / /Fl( ﬂ+€)u|2> dz dt
so-a [ ] () + 3+ ) de

- %(n — €o) /ST (—;E’(t) - /Qu'h(Vu)da:> dt

I /\

IN

C

2 1 _ r 2
< 2n— )(B(S) ~ B(T)) + §(ﬂ+e)(n—€o)c/s /Q Vul2da dt

a5

e’ r 1 1 &) —
2, = NGL and we note az := 5(n — €o) oG 04 = (n —

/132
s |Vul? + 2/|u |2>da:dt

we choose € = f3

)(ﬁc + CC\?) It follows that

(5.11) (n— eo)/ST /F <§|u’|2 - ug(u’))dxdt

T
< as / E(t)dt + a3 (E(S) — E(T)).
S

Combining (5.9), (5.10), and (5.11), we have

T

(512) (60 — ﬁag — (l4)/ E(t)dt

s
< a1 (B(S) + B(T)) + (a2 + a3) (B(S) — B(T)).
If 3 is small enough so that 28a; < a5 := €9 — Bas — ay, that is,
min{l — BR, %=in} ifb> 1,

ﬂ(2al —+ a2) + ay < €y = Ry ’ b+1 . .
T if f is linear
«c

ai

(note that (3(2a1 +a2) +as goes to 0 when 3 goes to 0), we conclude (5.2) with a = §*
and a = “2+a3 . We fix then Tj > 1 In(1 — 20a). Using (3.12) with 7 = S, we have

S+Ty 1
/ BE(t)dt > ~(1 — e PT)E(S +Tp).
S
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We insert this inequality into (5.2) with T'= S + T and obtain
([13(1 — e PTo) g — a) E(S+Ty) < (a+a)E(9).
Thanks to the hypothesis on Tp, we have %(1 — e PT0) > 2@, which implies (3.1) with
d:gﬁg%ﬁﬁ'

If Bas + as < €9 and a1 < az + ag (that is, \/R(R+ f(n—e)) < %(% + %202) +

3(n —eo) \E/%zﬁ), we conclude from (5.12) that (3.14) follows with ag =

aitaz+tasg
as :

Then in both cases the proof of Theorem 2.3 can be completed as in section 3.

6. Decay estimates: Proof of Theorem 2.4. To prove Theorem 2.4, which
concerns the stability of (P’) in the particular case h(Vu) = —V¢ - Vu, with ¢ €
Whe(Q), it is sufficient to prove that the equivalent energy E defined by (2.14)
satisfies (4.1) (see section 4).

In this section, we shall denote by ¢ diverse positive constants, by e diverse positive
constants small enough (which can be changed from a line to another), and by c,
diverse positive constants depending on e.

A simple computation shows that

(6.1) E'(t) = —2/ @' g Yde,  teRF.
Ty

Assumption (2.4) implies that the equivalent energy is nonincreasing.
We fix ¢y > 0 and we multiply the first equation in (P’) by

E%(t)e‘i’(m) (Qm -Vu+ (n— eo)u>,

integrating the obtained result over Q2 x [S, T] and using the boundary conditions. We

have
Il = /

Q S

r—l/ /F (@(Qm Vu o+ (n— eo)u )dmdt
|

¢@) (e +m - Vo) || dmdt—/

)e? @)y <2m -Vu+ (n— eo)u) dxdt

T

: (t)e? @y <2m -Vu+ (n— 60)u> da:}

e / (m VW) + (n— e) \u’\Q)dscdt

= (1)e?@ (m - v) || dTdt

+ [/ BT (1)@ (2m Vu+ (n— eo)u)d:c}z

_r-1 / / )e?@) (2m Vu+ (n—e)u )dxdt.
ry
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The last two terms of this equality can be easily majorized by cFE %(S); then we
deduce

(6.2) L > —cEH5(S) - R / B (1)e9@) |/ dUdt
Iy

T
(eo — R|Vo|w) / 4@ |u/|? dudt.
S

On the other hand, taking the generalized Green formula (see section 5), we infer

L _/
2(2—60)/;
NS

Using the definition of I'y and I'y, we deduce

(6.3) I > (2 —€) / / £)e?® |Vul? drdt

fde

Using (2.3) and the fact that F' is nonnegative, we obtain

I, _/
Z(”Eo)b/ST/Q

T
n—e)b—n—-—m- (1)@ F(u)de
> [ (e V)27 (1)) F (u)dudt

)e?@ (—Au — V¢ - Vu) (2m -Vu+ (n— eo)u) dxdt

T
@) |Vul® dzdt — / EZ (1)e?™) (m - v) | Vul* dTdt
S

e?@) ((m V) |Vul? = (n — e)udyu — 2(m - Vu)é‘yu) dldt.

£9(@) ((n — coyudu+ (a u) )drdt.

¢(a:)f( )(gm -Vu+(n— eo)u) dxdt

T
w)dzdt + /S /Q 2B (£)e?@m - V(F (u))dudt

/ [ 2= 0 - )Py

then we conclude that

T
(6.4) Iy > ((n— e)b—n — R||v¢||m)/s /Q2F(u)d:cdt.

Thanks to the assumptions in Theorem 2.4, we have the following.
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Case 5. If R|V¢|leo < min{2,n} and b > %, we can choose ¢, €
]R||V¢||Ooam1n{27 n— %}[ and then

min{ey — R||V@| 00,2 — €0, (n — €0)b — 1 — R||VP|loc} > 0.

Case 6. If f is linear, f(s) = as for some positive constant «, then b =1 and we
conclude from (6.4) that

T
L > (—eo— R|V]o0) /S /Q OF (u) dudt

= (60—R|V¢||oo)/ST/QQF(u)dxdt—260 /ST/Q2F(u)dxdt

T T
:(eo—RHV¢||OO)/ /2F(u)d;vdt—2eoa/ /\u|2dxdt
S Q S Q

T T
> (CO—RHWHW)/ /2F(u)da:dt—2€0aé/ /\Vu|2da;dt,
S Q S Q

where ¢ is the positive constant defined by (5.8). Then, assuming that R||Vd||e <
55z and taking €y €]R||V@|o, 155z ], the quantity min{ey — R[[Ve|lo0,2 — (1 +
2aé)eg } is positive.

Combining (6.2)—(6.4), taking the fact that Iy + Is + I3 = 0 into account, and

using the boundary condition on I'y, we obtain in both previous cases

T
(6.5) /S/QE%(t)dtch%l(S)

T
+c / E
S JIy
We now estimate the last term of (6.5). We exploit the Cauchy—Schwarz inequality
and the Sobolev imbedding V' C L?(T';) to get

T (0 + g (') + Jug(w)] ) dTdt,

lug(u")|dl < e/ |u|?dl’ —‘rCe/ g*(v')dTl < eE(t) —i—ce/ g*(u/)dr.
Ty Iy

Ty Iy

Substituting this inequality into the right-hand side of (6.5) and choosing € > 0 small
enough, we obtain that

T +1 r+l
(6.6) /S /S)E%(t)dtch 2(9)

T
+c/ / BT (t)e@ <|u’|2 +g2(u'))drdt.
S I
We follow now the proof given in section 4. We note

I ={zely: |v/|>1} and I =Ty \I'".
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By (2.12) and (6.1) we have

T T
/ / BT (1)e?®) (|u'{2 + gz(u’))da:dt < cE%l(S)/ / e? @/ g(u')dadt
s Jr+ s Jr+
<c (E#(S) - E%(T)) .

In the same way (using Young’s inequality), we get

T r—1 2 T r—1 o
/ E (t)e¢(m)(’u” +92(u’))dxdt < c/ E= (t) (e‘j’(r)u'g(u')) " dadt
s Jr- s Jr-

T T
< e/ BT (t)dt + ce/ / e?@/ g(u)dadt
S S -

< e/T E™ (t)dt + c (E(S) — E(T)).
S

Substituting the sum of these two estimates into the right-hand side of (6.6), choosing
e small enough, and letting 7' go to oo, we obtain (4.1). This finishes the proof of
Theorem 2.4.

Remark. Using the method developed above, the same results can be easily
obtained if we replace the first equation in (P) by

' — Au+ q1(2)(Vu) + @2 (z) f(u) + g3(z)g(u') =0 in Q x RT,
and the first equation and the boundary condition on I'y in (P’) by

u" — Au+ qi(2)h(Vu) + go(z) f(u) =0 in QxRF,
Oy + qa(x)u + gz(z)g(u') =0 on I'; xRT,

where ¢; : © — R are bounded functions such that gz2(x) > 0, q4(z) > 0, g3(x) >
ag > 0. If g4(x) > by > 0, we may take 'y = 0.
We define the equivalent energy of (P) and (P’), respectively, by

(6.7) E(t) = /QeW) (yu’|2 +|Vul® +2qz(m)F(u)) dz,
(6.8) E(t):/gewﬁ) (|u'|2+\Vu|2+2q2(x)F(u)) da:—i—/F @ |u|*dT

if h(Vu) = —V¢ - Vu with ¢ € Wh(Q), where ¢ € WH>(Q) satisfying Vo =
0 (z)Ve.

In the general case, we assume that 3]|q1[leo is small enough as in Theorem 2.1
and Theorem 2.3, where 3, c¢1, and ¢y are replaced by 5|10, @oc1, and ca|gs||oo,
respectively, and we define the energy of (P) and (P’), respectively, by (6.7) and (6.8)
with ¢ = 0. In order to get ride of the lower-order term, which is le |u|2dI‘7 we use

the solution of an auxiliary elliptic problem as an additional multiplier (see [4, Lemma
4.2]).
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7. Some applications of our method. In [6], we considered the following
Petrovsky system:

' + A?%u+ q(x)u+gu') =0 in QxRT,
(7.1) u=0,u=0 on I'x Rt
u(z,0) =up(z) and u'(z,0) = ui(x) in Q

where ) is a bounded domain in R™ (n > 1) with a smooth boundary I' and v is the
outward unit normal vector to I'. For g continuous, increasing, satisfying ¢(0) = 0,
and ¢ : © — RT a bounded function, we proved a global existence and a regularity
result. We also established, under suitable growth conditions on g, decay results for
weak, as well as strong, solutions. Precisely, we showed that the solution decays
exponentially if g behaves like a linear function, whereas the decay is of a polynomial
order otherwise. Similar results to the above system, coupled with a semilinear wave
equation, have been established by Guesmia in [5]. In [17], Messaoudi studied the
problem

u”—l—A2u+au’|u"m_2 —bu’u|p_2 =0 in QxRT,
u=0,u=0 on I'xRT,
u(z,0) =up(z) and u'(z,0) = u(x) in Q,

where a, b > 0 and p, m > 2. This is a similar problem to (7.1), which contains a
nonlinear source term competing with the damping factor. He established an existence
result and showed that the solution continues to exist globally if m > p; however, it
blows up in finite time if m < p. In this paper no result of stability was announced.
In [7], we obtained some stabilization results of the following elasticity system:

u;’—aim —&—gz(u;) =0 in Q XR+,
(72) u; =0 on I xRT,
' ui(z,0) =ul(z) and u(z,0)=ul(z) in Q
1=1,...,n,
where the unknown u = (u1,...,u,) : @ — R". Here, 0;;; = Ziz? %‘;;, Oij =

SRS GigmiEigs i = 3 (s w50), vy = 95wy = ik, and agg € WH(Q). We
proved some decay estimates which are crucially dependent on the behavior of the
damping g; at the origin and infinity. In [8], we extended these results to the case
of localized dissipations; that is, the damping is effective only in a neighborhood of a
suitable subset of the boundary.

In [4], we considered the problem of exact controllability and boundary stabi-
lization of elasticity systems with coefficients a;;x; depending also on time ¢. The
stabilization results obtained in [4] were generalized in [3] to the nonlinear feedback
case. The results obtained in [3] and [4] improve and generalize some ones obtained
earlier by Alabau and Komornik [1] in the case where g; is linear and a;;5; = const.

The decrease of energy plays a crucial role in studying the asymptotic stability of
the systems cited above. The situation of nondissipative systems (that is, the energy
is not decreasing) was not previously considered.

Using the method developed in previous sections, we can extend Theorems 2.1-2.4
to the following more general nondissipative problems.
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7.1. Petrovsky system.

u” + A%+ g (2)h(Au) + ¢2(2) f(u) + gs(x)g(u) =0 in QxR
u=0,u=0 on I'xRT,
u(z,0) = up(z) and u'(z,0) = u(x) in Q,

where h, f, g : R — R are three given functions satisfying Assumptions 2.1-2.5 and ¢;
are three given functions defined as in the remark above. Here ¢y > 0 is the smallest
imbedding positive constant (depending only on ) satisfying

/ ’v|2dx <o / ’Avfdx Yo € HE ().
Q Q
The energy and the equivalent energy are, respectively, defined by
_ 72 2 +
E(t) = (‘u |” + |Au|” + 2q2(J;)F(u))dJc, teRT,
Q
in the general case, and
E(t) = / e (@) (}u’ﬁ + |Au|2 + 2q2(:1c)F(u))dx, teRT
Q

if h(Au)= —¢(x)Au, with ¢ € L>°(£2), where p € W2°°(Q) satisfying Ap= q1 (x)¢(z).

7.2. Coupled system. We consider the nonlinear coupled wave equation and
Petrovsky system:

uy + A2uy + qi(z)hy (Aur) + g2 () fi1 (u1)

+ gz(x)g1(u)) + a1 (x)uga =0 in QxRT,
u’z’ — Auq + l1($)h2(VUQ) + lQ(&E)fQ(UQ)

+ l3(x)g2(ub) + az(z)u; =0 in QxRF,
Uy =u; = 0,u; =0 on I'xRT,
u(z,0) =ul(z) and ul(z,0)=ul(z), i=1,2 in Q

where ay, a2 are two bounded functions with norms small enough (see [5]) and the [;,
hi, fi, and g; are given functions defined as ¢;, h, f, and g, respectively.

If hi(Auy) = —¢1(z)Auy and hy(Vug) = —Ves - Vug with ¢ € L®°(02) and
B2 € WH(Q), then we assume that a;(z)e¥(®) = ay(z)e??(®) | where p; € W22(Q)
and @y € WH°(Q) satisfying Ay = q1(2)¢1(z) and Vo = 1 (2)Vs; we define the
equivalent energy by

(73) B0 = [ e (| + A + 200(0)Fa () de

+/ 6802($)(|u/2|2+‘vu2|2—|—2l2(x)F2(UQ))dIL'+2/ e‘Pl(w)al(x)u1U2dCL'7
Q Q

which is nonincreasing,

B0 = =2 [ (" ()i (u) + = a(a)uzgn(u)) < 0.

In the general case, we assume that a;(x) = az(z) and we define the energy by (7.3)
with @1 = o = 0.
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7.3. Elasticity systems. We are interested in the precise decay property of the
solution for elasticity systems:

w! — o35+ qi(@)hi(oi, ..., 0in)
+ q2,i(w) fi(us) + gzi(x)gi(uj) =0 in QxRY,
(7.4) u; =0 on xRt
ui(z,0) = ul(z) and ul(z,0)=ul(z) in £,
1=1,...,n,
with the same notations as before. Here for ¢ = 1,... ,n, h;, f;, and g; satisfy the

same hypothesis as h, f, and g in section 2, respectively, and g1 5, g2, and g3; are
defined as ¢1, g2, and g3 in section 7.1, respectively.
We define the equivalent energy of (7.4) by the formula

i=n j=n
E(t) = / Z e%"i(iv) <’u;|2 + Zaijgij + 2q2’z(x)Fl(ul)> d(E,
Qi j=1

where p; = 0 if h; is nonlinear, and if h; is linear, h;({) = —V¢; - ¢ for all { € R™
with ¢; € WH°(Q), then we take p; € W1°(Q) such that Vi; = q1.(x)Vé;. In the
case where all the functions h; are linear, our system is dissipative:

(0= =2 [ 37 e (@piaui)da <o
i=1

We obtain the results of Theorem 2.1 and Theorem 2.2.

Under some geometric condition as in [3], the results of Theorem 2.3 and Theorem
2.4 can be easily proved in the case of boundary feedback; that is, we consider the
homogenous Dirichlet condition on I'g, and we consider the following one on I'; (see

[3]):
j=n
Zoijl/j + qai(x)ui + q34(2) gs (uj) = 0.
j=1

Remark. The method developed in this paper is direct and very flexible; it can be
applied to various nondissipative problems (elasticity, thermoelasticity, Kirchoff, von
Karman, coupled systems, ...) with an internal or a boundary feedback, and it can
generalize the decay estimates (known in the dissipative case) to the nondissipative
one.

Open questions. The main restrictive assumptions under which the stability
results are valid are the smallness conditions on 3 (defined by (2.6)) assumed in
Theorems 2.1, 2.3, and 2.4. In the case of nonlinear function h, these assumptions
are required to obtain the inequalities (*) (given in the introduction). In Theorem 2.4
(stability of (P’) with h(Vu) = —V¢- Vu), the smallness assumption on [ is required
to absorb some terms caused by the use of the second multiplier m - Vu. It would be
interesting to know if the stability estimates still hold true under weaker assumption
on (3, using more sophisticated tools, for example, general multipliers. And if it is not
the case, it would be interesting to know if other weaker stability estimates can be
obtained.

Another important aspect of the case of nonlinear function h is assumption (2.5)
imposed on the damping g. It would be interesting to prove the same polynomial
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stability (obtained in the case of linear function h) under the weaker assumption
(2.12). With this perspective, it would be interesting to look at what we can conclude
at 0o on a positive function satisfying the following inequalities more general than (x):

[o Bo(t)dt < a1 (E(S) + E(T)) + a2(E(S) — E(T))  Y0< S8 <T < oo,
E'(t) <asE(t)  Vt>0,

where a;, i = 0, 1,2, 3, are nonnegative constants.

It would also be very interesting (particularly from the point of view of applica-
tions) to explore a more general class of hyperbolic equations based on the equation
K(z,t)u" — Au + F(x,t,u,u’,Vu) = 0,
where K and F' are given functions and Au = Z?jzl Oz, (aj(x,1)0,,u) is a second-

order elliptic differential operator with smooth coeflicients a;;.

Acknowledgments. The author is very grateful to the referees and the associate
editor for their valuable comments and suggestions.
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GENERAL LINEAR QUADRATIC OPTIMAL STOCHASTIC
CONTROL PROBLEMS WITH RANDOM COEFFICIENTS: LINEAR
STOCHASTIC HAMILTON SYSTEMS AND BACKWARD
STOCHASTIC RICCATI EQUATIONS*

SHANJIAN TANGT

Abstract. Consider the minimization of the following quadratic cost functional:

T
J(u) := E{Mzp,z7) + E/ ((Qsxs,zs) + (Nsus, us)) ds,
0

where z is the solution of the following linear stochastic control system:
d
dxt :(Atxt + Btut) dt + Z(szt + Dzut) de,
i=1
x9 =h € R™, uy € R™;

u is a square integrable adapted process. The problem is conventionally called the stochastic LQ (the
abbreviation of “linear quadratic”) problem. We are concerned with the following general case: the
coefficients A, B, C%, D*, Q, N, and M are allowed to be adapted processes or random matrices. We
prove the existence and uniqueness result for the associated Riccati equation, which in our general
case is a backward stochastic differential equation with the generator (the drift term) being highly
nonlinear in the two unknown variables. This solves Bismut and Peng’s long-standing open problem
(for the case of a Brownian filtration), which was initially proposed by the French mathematician J.
M. Bismut [in Séminaire de Probabilités XII, Lecture Notes in Math. 649, C. Dellacherie, P. A. Meyer,
and M. Weil, eds., Springer-Verlag, Berlin, 1978, pp. 180-264]. We also provide a rigorous derivation
of the Riccati equation from the stochastic Hamilton system. This completes the interrelationship
between the Riccati equation and the stochastic Hamilton system as two different but equivalent
tools for the stochastic LQ problem.

There are two key points in our arguments. The first one is to connect the existence of the
solution of the Riccati equation to the homomorphism of the stochastic flows derived from the
optimally controlled system. Actually, we establish their equivalence. As a consequence, we can
construct solutions to a sequence of suitably modified Riccati equations in terms of the associated
stochastic Hamilton systems (and the optimal controls). The second key point is to establish a new
type of a priori estimate for solutions of Riccati equations, with which we show that the sequence of
constructed solutions has a limit which is a solution to the original Riccati equation.

Key words. linear quadratic optimal stochastic control, random coefficients, Riccati equation,
backward stochastic differential equations, stochastic Hamilton flows, homomorphism of stochastic
flows, optimality conditions

AMS subject classifications. 93E20, 49K45, 49N10, 60H10

PII. S0363012901387550

1. Formulation of the problem and basic assumptions. Consider the fol-
lowing so-called linear quadratic (LQ in short form) optimal stochastic control prob-
lem: minimize over u € £%(0,T;R™) the following quadratic cost functional:

T
(1.1) J(u;0,h) := E(Mxp,xr) + E/o ((Qszs, zs) + (Nsus, ug)) ds,
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where x is the solution of the following linear stochastic control system:

d
dzy = (Ayzy + Byuy) dt + Z(szt + Dyuy) dWy,
i=1

(1.2)
rog=h € R™.

Here, {W; := (W},...,Wg&),0 < t < T} is a d-dimensional standard Brownian
motion defined on some probability space (2, F, P). Denote by {F;,0 <t < T} the
augmented natural filtration of the standard Brownian motion W. The control «
belongs to the Banach space E%_—(O,T; R™), which consists of all R™-valued square
integrable {F;,0 <t < T'}-adapted processes.

Throughout this paper, we make the following three assumptions on the coeffi-
cients of the above problem.

(A1) Assume that the matrix processes A : [0,T] x @ — R"*" B :[0,T] x Q —
R™m: O [0, T] x Q@ — R™" DU [0,T] x Q —»R™™ j=1,....d; Q:[0,T] x Q2 —
R™™ N :[0,T] x Q@ — R™*™ and the random matrix M : Q — R™*" are uniformly
bounded and {F;,0 <t < T}-adapted or Fp-measurable.

(A2) Assume that the state weighting matrix process ) and the control weighting
matrix process N are almost surely and almost everywhere (abbreviated hereafter as
a.s.a.e.) symmetric and nonnegative. Also assume that the terminal state weighting
random matrix M is almost surely (hereafter abbreviated as a.s.) symmetric and
nonnegative.

(A3) Assume that the control weighting matrix process N is uniformly positive.

In this paper, we shall demonstrate how to use (the optimal control processes of
the stochastic LQ problem and) the solutions of the stochastic Hamilton system to
construct a solution of the Riccati equation (see (3.1) in section 3), which in general
is a highly nonlinear backward stochastic differential equation (BSDE in short form).
We connect the existence of a solution of the Riccati equation to the homomorphism
of the stochastic flows derived from the optimally controlled system and identify their
equivalence. In this way, on one hand, we complete the interrelationship—partially
existing in the literature—between the stochastic Hamilton system and the Riccati
equation (see section 3). On the other hand, we solve the long-standing open problem
which was initially proposed in 1978 by J. M. Bismut [4] (see section 4).

The rest of our paper is organized as follows. Section 2 describes the stochastic
Hamilton system theory associated with the above LQ problem—most of which has
been known in the literature. Section 3 recalls known connections of the Riccati
equation to the stochastic LQ problem and to the associated stochastic Hamilton
system. Section 4 reviews some previous results concerning the Riccati equation,
which are known to the author. Section 5 sketches the main ideas and the main
results of this paper. The next three sections (6-8) are devoted to the detailed proofs
of the main results. Finally, in section 9, we give some concluding comments.

2. The stochastic Hamilton system. Let 7 be a {F;,0 < ¢ < T}-stopping

time such that 0 < 7 < T'. Consider the initial-data-parameterized stochastic LQ
problem: minimize over u € C%_—(O, T;R™) the quadratic cost functional

T
2.1) J(wTh) = E<Mff}’h;“,x?h‘“>+E/ (Qsa 7™, aT") + (Nous, us)) ds,
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where 27" is the solution of the following linear stochastic control system:
d
: i=1

. = h e L*(Q, Fr, P;R").

Assumptions (Al), (A2), and (A3) imply that the above stochastic LQ problem
has a unique optimal control. See Bismut [4] for the proof of this result. A further
step is to characterize the optimal control.

THEOREM 2.1. Let assumptions (A1), (A2), and (A3) be satisfied. Then, a
necessary and sufficient condition for u to be an optimal control of the parameterized
stochastic LQ problem is

d
(2.3) Nyug + By + Z(Dz)'zi =0, 7<t<T, a.s.
i=1
Here (y, z) (called the adjoint processes with z := (z',. .., z%)) is the (unique) solution

(see Pardouz and Peng [16]) of the BSDE (conventionally called the adjoint equation):

(2.4)

=1

d d
—dy, = [Aéyt +> (C)) 2+ th?h;“} dt =Yz dWi,  T<t<T,
=1

yr =M x;’h;u.

The proof is simple. In fact, the necessary part results from some simple varia-
tional calculus and some dual representation considerations. This part is convention-
ally called the stochastic maximum principle (see Bensoussan [2], Peng [20], and Tang
and Li [22], for example). The sufficient part stems from the convexity of the cost
functional J(-;7,h). All the details of the proof of Theorem 2.1 can be given similar
to the work in Bismut [3, 4].

From (2.3), we get the optimal control

d
(2.5) ug = —N;* [B;yt + Z(D;’)'z;}, T<t<T.
=1

The so-called stochastic Hamilton system is given by

d
dry = (Ayzy + Buug)dt + Y (Ciay + Djug) dW},  7<t<T,
=1
d
26) up = — Ny ! [B;yt + Z(Di)’zé} T<t<T,
: =1

d
—dy, = [A;yt +> (C))'2 + Qta:t} dt =Yz dW{, T<t<T,

i=1 i=1
= he L*Q,F, P;RY), yr=Marp, 2z :=(zl,...,2%).

It is a system of forward-backward stochastic differential equations (FBSDEs in short
form). The solution consists of a triple (z,y, 2).
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THEOREM 2.2. Let assumptions (A1), (A2), and (A3) be satisfied. Then, for
each fized pair (1,h) with 7 € [0,T] a.s. and h € L*(Q, Fs, P;R"), the stochastic
Hamilton system (2.6) has a unique adapted solution, which is a triple of stochastic
processes parameterized by the initial data (7, h), denoted by

{((b‘r,t(h)vwT,t(h)vuTi(h));T S t S Tah € L2(97f77P§Rn)}~

Moreover, we have for some deterministic positive constant [3,

T
. 2 2 2 < 2-
(1) B s [6ne0)F + B o s (0P + B [ a0t < 5N

LEMMA 2.1. Let assumptions (Al), (A2), and (A3) be satisfied. If
{(@r6(h), st (B), pir e (R)); 7 < t < T, h € L*(Q, Fry P;R™)}
is a solution to (2.6), then for any {F:,0 <t < T}-stopping time v € [1,T],
(try (), é7.4(h))
(2.8) L F T
=E" / (Qrbrr(h); P70 (h)) + (Nptiy, up)) dr + (M7 r(h), o717 (h)) ¢
~

where u is the optimal control given by (2.5).

Proof of Lemma 2.1. Using It6’s formula to compute the term (¢ . (h), ¢-r(h))
and then taking the conditional expectation, we get the desired result. 0

Proof of Theorem 2.2. Assumptions (Al), (A2), and (A3) imply the existence of
an optimal control u. From Theorem 2.1, u should satisfy (2.5), and then (x,y, 2) is
a solution. The existence part is proved. The uniqueness assertion is obvious once
(2.7) is true. Therefore, it remains to prove that (2.7) holds.

From Lemma 2.1, we have

T
B [ (@060 (W) 60 () dr + EM6,n (1), 600 (0) < E (1 ()] - 1)
(29) 77
B [ (Vo) dr < ()] - ).

T

While we have (2.6), it follows from a classical a priori estimate for BSDEs (see El
Karoui, Peng, and Quenez [6]) that

T
E max |gr (W) + E / e ()2 dt

7<t<T -

T
< BE / Qumn (W) dr + BE| M 1(h)[?

T
< BE / (Qromr (B, bmr (B)) dr + BE(M (), om0 ().

Here and in the following, § stands for a universal deterministic positive constant,
possibly changing from lines to lines. Therefore, we have from (2.9)

T
Q10) B s (ine0)F + B [ laW dt < BE (1 ()] ).
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In particular,

Elgr - (h)[* < BE(|tbr(h)] - |h]) < BB, (W) E|R[)'?,
which implies
(2.11) E\wm(hﬂ2 < ﬁE|h\2.

On the other hand, we derive from the forward stochastic differential equation in
(2.6) the following estimate:

T<t<T

T
E max ¢, (h)[? gﬂ{E|h|2+E/ |ut|2dt}.

From (2.9) and assumption (A3), we have

T
E max |6ro(W)P < ﬁ{E|h|2 5 [ (V) dt} < B{Ehl2 Bl (h)] - |h|>}-

r<t<T
(2.12)

Combining (2.10), (2.11), and (2.12), it is easy to see that (2.7) holds. The proof
is complete. 0

An indirect proof of Theorem 2.2 can also be given similar to the proof in Bismut
[4]. The above uniqueness proof is a direct one, which is an adaptation of relevant
arguments of Peng and Wu [21].

In the above, the solution of the LQ problem is reduced in an equivalent way
to the solution of the associated stochastic Hamilton system (2.6). However, the
stochastic Hamilton system (2.6) is a system of fully coupled FBSDEs, which is not
a satisfactory characterization to the optimal control. Some efforts have been made
by Bismut [3, 4] to decouple the FBSDEs, along the lines of Lions [15, Chapter III,
section 4]. In the following, we summarize his relevant results and refine his partial
arguments in the more general case of random initial times.

Let e; denote the unit vector of R™ whose ith component is one. Define, for
T<t<T,

XT,t = ((b‘r,t(el), o ad)‘r,t(en))7
(213) YT,t = (w'r,t(el)v e ,w‘r,t(en))v
ZT,t = (HT,t(el)7 s 7#T,t(6n))'

Then,

T
E max | X, ;> + E max |Y; >+ E/ | Z,4|? dt < oc.
r<t<T r<t<T .

Since Y7 ; is almost surely continuous in ¢ € [r, T], the meaning of Y ; is clear, and set
P; ;=Y. ;. Note that it is not clear whether the matrix-valued process {P;,0 <t < T}
is continuous.

THEOREM 2.3. Let assumptions (Al), (A2), and (A3) be satisfied. Then, we
have, for any h € L*(Q, F,, P;R™) and any {F;,0 <t < T}-stopping time ~ € [1,T],

(2.14) Or~(h) = X700, Y- (h) =Y b, pro(R) = Z; k.
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In particular,
(2.15) Yy, (h) =Y, h = P/h, h € L*(Q, F,, P;R™),
and therefore, for every stopping T < T,

(216) wO,'r(h) = Y‘r,‘r¢0,‘r(h) = P‘r¢0,‘r(h)~

Remark 2.1. From the first equality of (2.14), it follows that for s < ¢, the random
linear transformation ¢ 4(-) is a.s. a homomorphism if and only if the transformation
matrix X, a.s. has an inverse.

Proof. We can use It6’s formula to verify that {(X,h,Y; h, Z:h), 7 <t < T}
satisfies (2.6). By the uniqueness assertion of Theorem 2.2, we get (2.14). Letting v =
7 in the second equality of (2.14), we get (2.15). Finally, since ¢ (k) = ¥+ (o~ (h)),
then (2.16) follows from (2.15). The proof is complete. a

We have the following feedback representation of the adjoint process {y;,0 <t <
T}.

THEOREM 2.4. Let assumptions (A1), (A2), and (A3) be satisfied. Let (x,y,2)
be the solution of (2.6) as 7 = 0. Then for any stopping time v < T, we have

(2.17) yy = Pyzy,  a.s.

Moreover, we have

T
]DV = EJ-Z,{/ (<Q5X'y,s;X'y,s> + <]\75U%S7 U,Y7S>)d8 + <]\/[AXV,Y7T,)(,),7'1">}7
Y

Pr=M,

(2.18)

and Py is symmetric, nonnegative, and uniformly bounded. Here,

d
(2.19) U,s=—N"* [B;Y%S +Y Dz } y<s<T.

s“y,s
i=1

Proof of Theorem 2.4. We have z, = ¢g(h) and y, = 9o~(h). Then (2.17) is
identical to (2.16). The rest assertions of Theorem 2.4 can be proved in a way similar
to the proof of Proposition 11.4 of Bismut [4, p. 211]. 0

3. The Riccati equation: Known connections to the LQ problem and
the Hamilton system. In view of deterministic LQ theory, it is natural to connect
the stochastic LQ problem with the Riccati equation. In fact, the Riccati equation
results from decoupling the stochastic Hamilton system. However, the way how to
go from the stochastic Hamilton system to the Riccati equation has not yet been—to
the best of the author’s knowledge—established in a rigorous manner. In the litera-
ture, a formal approach to derive the associated Riccati equation from the stochastic
Hamilton system a priori assumes that there is a semimartingale K of the form

t t d
Kt:KO—i—/ Kl(s)ds+/ > Lidwi
0 0 =1

such that

Yy = Ky



STOCHASTIC LQ WITH GENERAL RANDOM COEFFICIENTS 59

Then, use Itd’s formula to compute K;x;, compare with y;, and identify the inte-
grands of the Lebesgue integral and Itd’s integral, respectively. As a consequence, the
following Riccati equation can be derived:

d
3.1) dKy = — G(Ay, By, Cy, Dy; Qy, Ny Ky, Ly) dt + ZLi AW/,
) i=1
Kp =M, L= (LY,...,LY),

where for any A € R"*" B € R™™ C = (C,...,C%) € (R™")4, D = (D',..., D%
€ (R™™)4; @ € R™*"(being nonnegative), N € R™*™(being uniformly positive),
K e RV L = (LY,..., L% € (R"™")? with K being symmetric and nonnegative
and L* (i = 1,...,d) being symmetric, we have defined

-1
G1(B,C,D,N;K,L) := {KB + Z (CYYKD' + Z UDZ} {N + Z (DY) KDZ}
=1
{KB + Z (CYKD' + Z LlDl}
=1
d d
G(A,B,C,D;Q,N;K, L) :=AK + KA+ Q+» (C'YKC'+) [(C")L'+ L'C"]
i=1 i=1
+G1(B,C,D,N;K,L).
(3.2)
It is a BSDE with the generator G(A;, By, Ct, Dy; Q, Ny; K, L) being nonlinear in K
and L. For the full details on the above-mentioned formal derivation, we refer to
Bismut [3, 4]. The above backward stochastic Riccati differential equation (3.1) will
be hereafter abbreviated as BSRDE (3.1). Note that the semimartingale property of
K is assumed rather than being proved.
DEFINITION 3.1. A solution of BSRDE (3.1) is defined as a pair (K, L) of adapted
matrix processes such that
i) fOT |Ls|? ds < oo, a.s.;
(ii) N + Z?Zl(Di)’KDi is a.s.a.e. positive; moreover,

T
/ |G(ASaBS7C.97Ds;QS7NS;K57LS)|CZS < o0, a.S.]
0

and

(iii) K; = M + [, G(As, By, Cs, Dy; Qs, No; Ky, L) ds — [ S0 LEdW! for all
te[0,T].

In the literature, we have the following rigorous connections of the Riccati equa-
tion to the stochastic Hamilton system and to the stochastic LQ problem.

THEOREM 3.1. Let assumptions (A1), (A2), and (A3) be satisfied. Let T be a
{F:,0 <t < T}-stopping time such that 0 < 7 < T, and let (x,y, z,u) be the solution
of (2.6) with u be